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Non-iterative RGB-D-inertial odometry
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Abstract

This paper presents a non-iterative solution to RGB-D-inertial odometry system. Traditional odometry methods resort to
iterative algorithms which are usually computationally expensive or require well-designed initialization. To overcome this
problem, this paper proposes to combine a non-iterative front-end (odometry) with an iterative back-end (loop closure)
for the RGB-D-inertial SLAM system. The main contribution lies in the novel non-iterative front-end, which leverages
on inertial fusion and kernel cross-correlators (KCC) to match point clouds in frequency domain. Dominated by the fast
Fourier transform (FFT), our method is only of complexity O(nlogn), where n is the number of points. Map fusion is
conducted by element-wise operations, so that both time and space complexity are further reduced. Extensive experiments
show that, due to the lightweight of the proposed front-end, the framework is able to run at a much faster speed yet still

with comparable accuracy with the state-of-the-arts.
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1 Introduction

Simultaneous localization and mapping (SLAM) is one
of the most basic capabilities of autonomous robots,
and has received increasing attention in tandem with
the development of hardware, such as smarter sensors
and faster processors (Bailey and Durrant-Whyte 2006).
However, visual dense mapping algorithms are still difficult
to be applied directly to micro-devices, e.g. head-mounted
augmented reality (AR) devices or micro unmanned aerial
vehicles (MUAV). This is because micro-devices are only
able to provide limited computational resources, such as
ultra-low power embedded processors, due to payload
and power limitations. Moreover, dense maps, which are
crucial for higher level applications, such as collision-free
motion planning, object detection and scene understanding,
require more computational resources to produce (Henry
et al. 2012). This paper aims to develop a lightweight
dense mapping system that can be carried by micro-
devices, and can achieve faster computation with sufficient
accuracy. Leveraging on inertial fusion and kernel cross-
correlators (KCC), this paper proposes a non-iterative front-
end (odometry) for RGB-D-inertial SLAM systems.

Odometry system, which is in charge of processing
sensor information to generate observations to be fed
to an estimation machinery (Valencia and Andrade-Cetto
2018), is the most important and time consuming part of a
SLAM system. From the following analysis, we find that
iterative solutions dominate the existing visual or visual-
inertial odometry systems. First, iterative closest point

(ICP) is one of the most widely used algorithms for point
cloud matching (Besl and McKay 1992). The problem of
ICP and its variants lies in the high complexity, so that
many modern algorithms such as (Newcombe et al. 2011a;
Whelan et al. 2012, 2015b, 2016; Newcombe et al. 2015)
need powerful GPU to process the large amount of data.
Second, feature-based (Davison et al. 2007; Klein and
Murray 2007; Forster et al. 2014; Henry et al. 2012; Mur-
Artal et al. 2015) and direct methods (Kerl et al. 2013a,b;
Gutierrez-Gomez et al. 2016; Engel et al. 2014; Newcombe
et al. 2011b; Forster et al. 2014) have been proposed for
monocular, stereo cameras, and RGB-D cameras (Endres
et al. 2014; Kerl et al. 2013a). However, they also need
iterative methods, e.g. Gauss-Newton, to minimize the
reprojection or photometric error, so that the camera motion
can be estimated. Third, the tightly-coupled inertial fusion
SLAM algorithms using monocular camera (Concha et al.
2016), stereo camera (Leutenegger et al. 2015), and RGB-D
camera (Laidlow et al. 2017) also need iterative numerical
solutions to solve an associated non-linear optimization
problem. Fourth, to remove outliers, iterative methods like
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RANSAC (Raguram et al. 2008) are also widely used (Mur-
Artal et al. 2015; Endres et al. 2014). Last, the recent trend
towards deep learning based-methods (Costante et al. 2016;
Mohanty et al. 2016; Tateno et al. 2017; Clark et al. 2017;
DeTone et al. 2017) stimulates a new wave of research, but
the real-time performance may still be low, especially the
iterative training process (back-propagation) can only be
performed off-line. This challenge opens space for on-line
learning techniques.

The above discussion shows that iterative solutions,
including but not limited to the abovementioned, may be
the main computational burden of an odometry system.
To reduce the computational complexity, we have the
following observations:

(i) A closed-form solution to odometry system may be
able to reduce the computational complexity dramatically.
Moreover, a closed-form solution doesn’t require well-
designed initialization to prevent convergence to a local
minimum. However, the objective functions of traditional
methods, e.g. tightly-coupled inertial fusion, feature-based
and direct methods, are highly non-linear and difficult to
find feasible closed-form solutions.

(i) In many cases, inertial fusion typically introduces
additional complexity due to additional filtering or
optimization processes for inertial measurements. Is it
possible to reduce the complexity based on inertial fusion?
One of our intuitions is to determine the camera translation
by visual techniques, and determine the attitude by rotation
estimation from an inertial sensor, e.g. the attitude and
heading reference system (AHRS). However, the magnetic
drift is inevitable, the rotation estimation sometimes needs
corrections from visual measurements.

To reduce the complexity while keeping sufficient
accuracy, we propose to combine a non-iterative front-end
(odometry) with an iterative back-end (local and global loop
closure) for the RGB-D-inertial SLAM system. To this end,
we reformulate the problem of point cloud matching by
first leveraging on the inertial fusion to decouple the point
clouds. Then a kernel cross-correlator (KCC) is applied to
obtain a pose estimation with a closed-form solution. For
the back-end, we leverage on the feature-based method that
jointly optimizes key-frame poses with landmark features
over a pose graph. This results in a lightweight key-frame-
only based loop closure system that aims to correct both
odometry and inertial drifts. It will be shown that the
proposed framework provides a good compromise between
efficiency and accuracy. Our main contribution lies in a
novel framework for RGB-D-inertial SLAM, especially the
non-iterative front-end odometry system.

A preliminary version of this work was presented
in (Wang et al. 2017a). It demonstrated that, for the
first time, a non-iterative solution is feasible to the
RGB-D-inertial odometry system. This paper extends the

initial version comprehensively. First, a flexible framework
is proposed for RGB-D-inertial SLAM. Second, the
orthogonal reprojection process is extended to dynamic
resolution, resulting in a more accurate estimation and
detailed map. Third, the non-iterative solution is re-derived
in a much simpler way using our recently proposed KCC
(Wang et al. 2018b). Last, it is demonstrated that the
inertial fusion and non-iterative solution are able to reduce
the complexity of RGB-D SLAM dramatically, comparing
with several state-of-the-art algorithms. This results in a
lightweight RGB-D-inertial SLAM system that can be
carried by micro-robot systems.

2 Related work

This paper focuses on odometry system, dense mapping,
and inertial fusion. The works on monocular/stereo camera
will also be reviewed.

2.1 Visual odometry and map fusion

Many dense mapping systems resort to ICP and its
variants to align point clouds with respect to photometric
or geometric constraints. KinectFusion (Newcombe et al.
2011a) is one of the most famous methods, where the
pose transformation is obtained by tracking the live depth
frame relative to the global model using a coarse-to-fine
ICP algorithm with geometric constraints. It permits dense
volumetric reconstruction of complex room-sized scenes.
Following this work, Kintinuous (Whelan et al. 2012)
enables dense mesh-based mapping for extended scale
environments and implements a triangular mesh generation
module for the map representation. ElasticFusion (Whelan
et al. 2015b) combines dense geometric constraints with
photometric constraints to achieve robust pose estimation
in more challenging scenes. Furthermore, (Whelan et al.
2015a) brings Kintinuous and ElasticFusion together, and
adds a method for improving camera-frustum overlap for
a greater reconstruction range. The pose estimation is
obtained by a dense every-frame volumetric fusion front-
end, and the dense surface is corrected by a non-rigid map
deformation back-end. DynamicFusion (Newcombe et al.
2015) generalizes the truncated signed distance function to
nonrigid case, so that dynamic scenes can be reconstructed
and a volumetric 6-D motion field can be estimated.
BundleFusion (Dai et al. 2017) applies a local-to-global
pose alignment framework and a paralleled sparse-to-dense
optimization for sparse feature correspondence and dense
geometric and photometric matching. Since the above
methods heavily rely on ICP and require powerful GPU
to process large amount of data, they are not applicable to
systems with low computational power. Instead of matching
points directly, DIFODO (Jaimez and Gonzalez-Jimenez
2015) applies a depth flow constraint on the motion model
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to derive the linear and angular velocities in a rigid
environment.

To decrease the complexity, dense visual odometry
(DVO) (Kerl et al. 2013b) proposes a faster, robust method
based on a t-distribution-based photometric error model that
can be obtained by an iteratively re-weighted least square
(IRLS) algorithm. An improved version of DVO (Kerl
et al. 2013a) extends the t-distribution model to depth error
and proposes an entropy-based similarity measurement
for key-frame selection and loop closure detection. The
proposed t-distribution model can be reduced to the
standard least square minimization problem when error
residual is assumed to be normally distributed.

Feature-based method is one of the most widely-used
methods in visual odometry. It leverages on an iterative
optimization process to minimize reprojection error. The
basic idea is that the transformation between camera poses
can be recovered by matched features. During the feature-
detection step, salient key features that are likely to be
matched well with other images are selected. Basically,
there are two main approaches to find the corresponding
features (Fraundorfer and Scaramuzza 2012). One is to
extract features by local search techniques (Forster et al.
2014) and match them between the latest image and key-
frame (Mur-Artal et al. 2015). It is suitable for images
taken from nearby viewpoints. The other one is to extract
features independently and match them based on similarity
descriptors (Khan and Wollherr 2015), which can also be
used for large motion between viewpoints.

Based on feature tracking, PTAM (Klein and Murray
2007) first proposes to track the camera poses parallel to
the mapping thread in a bundle adjustment framework. This
enables real-time landmarks tracking and pose estimation
at frame-rate. ORB-SLAM (Mur-Artal et al. 2015) carries
forward this work by designing a robust system that uses
the same features for all SLAM tasks: tracking, mapping,
relocalization, and loop closuring. This leads to a more
reliable and complete solution. One of the earliest dense
feature-based SLAM systems is RGB-D mapping (Henry
et al. 2012) where Generalized-ICP and RANSAC are
combined to optimize the pose graph. RGB-D-SLAM
(Endres et al. 2014) exploits feature correspondences by
sparse bundle adjustment and has become one of the most
successful feature-based methods in RGB-D SLAM family.

In contrast with feature-based methods, direct methods
match raw image pixels directly. Since there is no
descriptor, only local search techniques can be used to
find the corresponding pixels, hence it needs well-designed
initialization for large motion between two viewpoints.
DTAM (Newcombe et al. 2011b) develops a real-time
camera tracking and reconstruction system where pose
estimation is from the minimization of photometric error
on every pixel. Within a depth probabilistic framework,

SVO (Forster et al. 2014) achieves semi-dense maps with
accurate motion estimation by minimizing photometric
error outside non-negligible gradients regions. LSD-SLAM
(Engel et al. 2014) proposes to build consistent large-scale
maps by aligning image directly based on photoconsistency
and estimating a filtering-based semi-dense depth map. By
incorporating disparity sources from fixed-baseline, Stereo-
LSD (Engel et al. 2015) avoids the scale-drift problem and
builds a consistent map for large scale environments using
stereo cameras. DSO (Engel et al. 2017) proposes a direct
sparse odometry system that minimizes the photometric
error on sampled pixels with large intensity gradients.

The deep learning based visual odometry methods
have also been studied. In (Costante et al. 2016),
the authors explore the convolutional neural networks
(CNN) to learn visual features for ego-motion estimation.
DeepVO (Mohanty et al. 2016) proposes a CNN-based
architecture for estimating the object’s pose under a known
environment. CNN-SLAM (Tateno et al. 2017) combines
the direct methods with CNN-predicted depth maps to
overcome the absolute scale problem of monocular SLAM.
(DeTone et al. 2017) proposes to train two CNNs, one of
which operates on single image and extracts salient 2-D
points, while another one operates on pairs of the points
and estimates the homography.

2.2 Inertial fusion

Inertial sensors provide additional constraints for pose
estimation and help improve the performance of visual
odometry systems. The most computationally efficient
inertial fusion approach may be the loosely coupled
methods, that process inertial and visual measurements
separately. (Weiss and Siegwart 2011) presents an extended
Kalman filter (EKF)-based constant complexity framework
that treats the visual odometry system as a black box. This
leads to a relatively low computational cost for additional
processing. MSF-EKF (Lynen et al. 2013) presents a
generic and modular multi-sensor fusion framework to
deal with delayed absolute or relative measurements.
Alternatively, attitude estimation can be extracted and fused
into visual estimation algorithms. (Konolige et al. 2010)
shows that angular precision of long term visual odometry
can be improved a lot by loosely coupled fusion.

In contrast to loosely coupled methods, tightly-coupled
methods estimate the states jointly. MSCKF (Mourikis
and Roumeliotis 2015) derives a measurement model
that is able to express geometric constraints from static
image features. It jointly estimates the IMU states and
a sliding window of camera poses by an EKF estimator,
resulting in a linear complexity in the number of features.
MSCKF 2.0 (Li and Mourikis 2013) improved MSCKF
and corrected the inconsistent linearized system model that
has incorrect observability properties. OKVIS (Leutenegger
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Figure 1. The proposed framework of non-iterative RGB-D-inertial odometry system. The 3-D movements are estimated in decoupled
subspaces separately. The whole process is of complexity O(n log(n)) where n is the number of image points.

et al. 2015) constructs a joint probabilistic cost function
that combines visual reprojection errors and inertial
measurements to observe landmarks using monocular or
stereo cameras. (Concha et al. 2016) proposes a joint non-
linear optimization system using direct method, resulting
in a semi-dense map. (Forster et al. 2015) develops a
preintegration theory for IMU on the manifold structure of
rotation group that is able to integrate the large number
of inertial measurements between key-frames as a single
geometric constraint. (Ma et al. 2016) combines inertial
tracking in a dense SLAM framework for reconstructing
large scale out-door scenes. (Laidlow et al. 2017) proposes
the first tightly-coupled dense RGB-D-inertial SLAM
system for map deformations. Tightly-coupled methods
have shown a potential to improve the accuracy, while it
introduces additional complexity due to the involvement of
a large number of measurements in the optimization.

The deep learning based inertial fusion is also studied.
Based on recurrent and convolutional networks, VINet
(Clark et al. 2017) presents an on-manifold sequence-to-
sequence learning approach to inertial fusion.

3 System architecture

This section recalls the existing iterative methods and
proposes a non-iterative framework for RGB-D-inertial
odometry system. Iterative methods are defined as the
odometry algorithms that need iterative solutions.

3.1 Iterative framework

The SLAM algorithms for RGB-D cameras, such as
(Newcombe et al. 2011a; Whelan et al. 2012, 2015a,b,
2016; Newcombe et al. 2015; Dai et al. 2017) that heavily
depend on ICP and its variants are the most representative
examples of iterative methods. Let {M, S} be two finite
point sets with both position and color information, the

objective of ICP is to find a transformation 7 (-) applied
to the points M, such that the distance D in (1) between
T (M) and S is minimized (Besl and McKay 1992).

> > pm—s),

meT (M) seS

D(T(M),S) : (1)

where p(-) is a general objective function, and can be
the square of the Euclidean distance combined with the
photometric error. ICP and its variants are the most widely
used point set registration algorithms, although they cannot
guarantee the global minimum (Laidlow et al. 2017).

Feature-based and direct methods are also the examples
of iterative methods. They minimize the reprojection or
photometric error to recover pose transformations. Assume
the perspective model m,( - ) projects 3-D point p; to image
point u;, so that u; = m,(Ecwp;) where Ecy is the
transform matrix from the world to camera frame. The
camera pose Er,y;, is expressed by left-multiplication of an
exponential mapping, i.e., E;, = exp(u)Ecw, where p
is a vector with six degrees of freedom (DoF).

In feature-based methods, feature points u; in one
image are reprojected to u} in another image, the pose
transformation vector p is estimated by minimizing the
reprojection error R (ut).

R = Z p(ul; — Wp(E/CWW;I(Ui7 Ecw))). @

In (Klein and Murray 2007), p is the Tukey biweight
function; whereas in (Forster et al. 2014; Henry et al. 2012),
p is taken as the Lo-norm. For monocular camera (Klein
and Murray 2007; Mur-Artal et al. 2015), an initial process
to obtain the point depth is needed, while for stereo/RGB-D
camera (Engelhard et al. 2011; Ji et al. 2015), this process
can be skipped .
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Figure 2. Differences between perspective and orthogonal
projections. The perspective projection (a) projects 3-D points on
the principle point, while orthogonal projection (b) projects points
on the orthogonal plane. A quadrangular frustum pyramid can be
a rectangle when the vertex coincides with the principle point.
While for orthogonal image, the size ratio of the two rectangles
will not change. This simple property is used for data decoupling.

In direct methods, new images are aligned with several
key frames I,. by minimizing the photometric error H (u):

Moo= 37 pll (h) = 1(my (Bl wm, (s Bew))))- @)

Similar expressions can be found in (Kerl et al. 2013a;
Engel et al. 2014; Newcombe et al. 2011b; Forster et al.
2014; Omari et al. 2015). Note that direct RGB-D SLAM
(Kerl et al. 2013a) also minimizes depth error over pixels.
The non-robustness to illumination change is one of
the potential problems to match pixel intensities directly
(Newcombe et al. 2011b). Since (2) and (3) are highly non-
linear, iterative numerical solutions are needed.

Iterative solutions also play a significant role in tightly-
coupled inertial fusion with the above methods. The inertial
residual is imposed into the objective function of ICP (1),
reprojection error (2), and photometric error (3), resulting
in the RGB-D-inertial (Laidlow et al. 2017), reprojection-
inertial (Leutenegger et al. 2015), and direct-inertial
(Concha et al. 2016) optimization problems, respectively.
Similarly, iterative numerical solutions are needed.

3.2 Non-iterative framework

Our proposed non-iterative framework for the front-end
shown in Fig. 1 consists of several blocks and will be
explained in the Section 4 to 9. A procedure of decoupling-
estimation-recoupling is proposed as follows: 3-D point
clouds are first decoupled into several subspaces, where
data can be matched independently with lower complexity;
then the camera motion is obtained from recoupling the
estimation in the subspaces. Based on the single key-frame
training using kernel cross-correlator (KCC), the translation
of the camera pose is predicted by finding the maximum
response of the correlation output. This enables the fast
motion estimation on ultra-low power processors. Finally,
3-D maps are fused with non-key-frames by a moving

average, so that the missing information of key-frames is
complemented with complexity O(n). Unless otherwise
stated, the complexity analysis in this paper is in terms of
the number of points n in an image.

4 Data decoupling

This section introduces the point cloud decoupling, from 6
DoF to 2 DoF. As shown in Fig. 1, we are introducing a
loop where the first block is dependent on the output of the
last block, i.e. the rotation estimation from the last cycle is
needed for data decoupling. At the beginning, the camera is
assumed to be located at the origin.

4.1 6 DoF to 3 DoF

It has been shown that even the low-cost, low-precision
inertial measurement unit (IMU) can significantly increase
performance of the attitude estimation (Konolige et al.
2010). To avoid the traditional optimization problem and
decouple the rotational and translational movement, the
attitude estimation in Section 9 is applied directly. It is
obtained from fusion of back-end and the attitude and
heading reference system (AHRS)'. A point cloud is a
set of points with pose G € SE(3) and is defined with a
specified color to represent an external surface of an object
or environment. Assume the k;;, key-frame is denoted as
K (Gy), a point cloud P;(G;) can be rotated to align with
the key-frame by its orientation R € SO(3). The aligned
point cloud P; is obtained through

Pi(ti) = Ru(Ry) 'Pi(Gy), 4
where

G, = Bi ﬂ with R; € SO(3) and t; € R3.  (5)

In this sense, the original 6 DoF G; is reduced to 3
translational DoF. From now on, we only need to estimate
the translation between point clouds P; and K.

The idea of estimation after decoupling is proved to be
feasible in (Makadia et al. 2006), which leverages on orien-
tation histograms for rough attitude estimation. However, it
requires a fine alignment in the final step by running ICP
and the translation estimation is based on linear correlation
of two point clouds via 3-D Fourier transform with com-
plexity O(nznyn; log(ngnyn,)), where ng, n,, n, are the
number of voxels in each dimension, respectively. It will be
shown that our method is only of complexity O(nlogn),
where n = n;n, is the number of points in the image.

One of the potential problems to decouple point
clouds by rotation estimation is that the distorted inertial
measurements may have a negative influence on translation
estimation. For example, magnetic drift or attitude bias
can suddenly change in severe situations. In this paper, we



Figure 3. A point cloud (a) captured by a depth camera is
rectified by the posterior attitude estimation. Image (b) is a
perspective image. It is reprojected to an orthogonal color image
(c) and depth image (d). Black holes can be seen in (c) and
(d), since some missing points in (b) are also projected to the
orthogonal image plane.

assume that they are short-term stable, i.e. the bias and drift
estimation can roughly follow their real values between two
consecutive key-frames. The accumulated long-term drift is
corrected by the visual local and global loop closure. Sine
they are running in the back-end and only performed on
key-frames, the system complexity is still dominated by
the odometry part. It will be shown that this provides a
good compromise between performance and computational
complexity, since the non-iterative solution to the odometry
system reduces the complexity dramatically yet still with
comparable accuracy.

4.2 3 DoF to 2 DoF

Computation requirements can be further reduced if the 3-D
translational movements are also decoupled. The principle
is that the geometry properties in the 3 axes must be
kept. We propose to apply orthogonal projection instead of
respective projection on the aligned point cloud P; (t;) to
get orthogonal color and depth images x¢, xP € R"=*"v,
A 3-D point p = (z,y,2)T € P on the visible surface
is mapped to image coordinates u = (u,v)” € Q via the
orthogonal projection model 7, : R? — R? | which is

defined as:
U 1 |z
ERR ®

where 1, € RT is the projection resolution that can be
set adaptively. The subscript ¢ denotes that the point
coordinates are expressed in the aligned camera frame. The

orthogonal depth image is defined as:
xP(u) = [2]e. @)

It stores the point distances to the orthogonal plane versus
the perspective depth image that stores the distances to
the camera center. This slight difference is illustrated
in Fig. 2. The perspective projection cannot keep the
geometric relationship, since an object becomes smaller
as its distance from the viewpoint increases. While in
orthogonal projection, the size ratio of objects is kept
the same, regardless their distances. This simplifies the
estimation process, since we can now estimate the 2-D
translation of orthogonal images followed by 1-D depth
translation estimation perpendicular to the plane.

Before that, one thing that needs to be considered is
the projection resolution r; which is physically the size
of covered space by each pixel. The field of view of
orthogonal projection is a cuboid space with the central axis
coinciding with the camera optical axis. The covered space
is determined by the projection resolution 7, and the image
size my X n,. Since points outside of the cuboid will be
cropped, 7y is to be set large enough to make the cuboid
cover most of the points. Meanwhile, there will be a large
black margin on the image, if 7, is set too large, since not all
the pixels can be covered by the projected points. Moreover,
the minimum cuboid envelope of a point cloud may change
dramatically because of the camera movements.

To be robust to changing scenes, we implement a
searching procedure to find the resolution rg, so that
the cuboid space covers 80% points in the cloud (set
empirically, most of the boundary points are outliers). To
be efficient, it traverses the cloud by sampling one point
in every 25 points. Note that in this process, we keep
the central axis of the cuboid envelope coincided with
the camera’s optical axis. Although the sampling is not
precise, we find that the approximation is acceptable and
its complexity is only O(n/25), so that the computational
time can even be ignored compared to the runtime
in the following sections. To further reduce repeated
computations, the resolution 7, is updated only when a key-
frame is created. Another advantage of adaptive resolution
is that when the camera is near to the scene surfaces, more
details can be preserved with smaller 7.

Since the point clouds are generated by pinhole cameras,
when they are reprojected on the orthogonal plane, some
black holes may appear inside the image. This is because
some missing points for pinhole cameras are also projected
on the orthogonal plane. We will show that they can be filled
by the map fusion process presented in Section 8. Fig. 3
shows an example that a 6 DoF point cloud is rectified by
rotation estimation and reprojected to orthogonal images.

In the preliminary version (Wang et al. 2017a), a further
step for image vectorization is conducted, so that image
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translation becomes vector shift. In this paper, we adopt
the image translation prediction directly, which is of same
complexity with the preliminary version.

5 Key-frame training

We propose to apply a non-linear cross-correlator to predict
the image translation. Cross-correlators are useful tools and
have been used for optical flow (Wang et al. 2018a) and
object tracking (Bolme et al. 2010; Henriques et al. 2015).
The correlator used in this paper is based on our previous
work on kernel cross-correlator (KCC) (Wang et al. 2018b).
We start with a brief definition of KCC.

The superscript C,D of orthogonal key-frame and
test images z&7,x%P will be left out in the absence
of ambiguity. The convolution theorem states that the
correlation operation becomes element-wise conjugate
multiplication in Fourier domain. Denote the 2-D fast
Fourier transformation (FFT) F(-) as °, i.e. x = F(x),
so that the cross-correlation of two matrices g = x *x h
is equivalent to § =X ©® h*, where the operator ® and
superscript * denote the element-wise multiplication and
complex conjugate, respectively. Assume the image size
is n, X n,. The bottleneck of correlation is to compute
the forward and backward FFTs, hence the complexity
of the entire process has an upper bound O(nlogn)
where n = n, x n, is the number of elements. Define
the kernel function as k : R®» X" x R"%*% s R, such
that r(x;,x;) € R. Assume z;; = S; ;)(z) is the circular
translation of the key-frame z with (3, j) elements. Given
a test image x € R™=*™ and its desired correlation
output g € R™»*"v_ the translational case of kernel cross-
correlator is defined as:

g = R,(x) ©h*, (8)

where k,(x) is the kernel matrix, with element in iz,
row and ji, column as k(x,z;;). More details about full
definition of KCC can be found in (Wang et al. 2018b,a).
Given the correlation output g, the training objective
is to find a filter h (h € C"=*"v) to satisfy (8). To be
efficient, training is conducted in the Fourier domain to take
advantage of the simple element-wise operation, i.e. the
sum of squared error F'(h*) in (9) between the correlation
output and the desired output is minimized, i.e. min F'(h*).

F(h") = |R5(z) ©h" = &]* + Al|V/Rs(2) © b7, )

where the second term is a regularization to prevent
overfitting and /- is element-wise square root operation.
Solving the optimization problem requires setting the first
derivative to zero, i.e.

V- = 0. (10)

Since all the operations in (10) are element-wise, we can
simply find a closed-form solution:

* g
h=_—=2 11
f%z (Z) + A ( )
where the operator — denotes the element-wise division.
In this sense, the pattern of translational motion of the
key-frame z is encoded in the filter h. In the experiments,
the radial basis function kernel (12) is applied.

k(x,2i5) = h (% = 245]%) - (12)

However, since the complexity of (12) is O(n), the kernel
vector K, (x) is of complexity O(n?), which may be on-
line infeasible. To compute it efficiently, we first expand the
norm in (12):

h(lx =z 1) = A% + llzi; [* — 2 Tr(x" 25)),
(13)
where Tr(-) is the trace operator. Since ||x||? and ||z;;||?
are constant, the kernel matrix can be calculated as:

k() = b (%) + 22 = 2 [Te(x"235)], , )s (14)

where [Tr(x7z;;)] is a n, x n, matrix with element
Tr(xTz;;) on position (i, ;). Because of the correlation

theory, we know that x * z = [Tr(x”'z;;)] .. - Substitute

Ny

NzMy

it into (14), we have

Ko (x) =h (|Ix[|* + [[2]|* — 2 x x z)
=h (|Ix|* + l|z]* - 2- F~ (x ©27)).

(15a)
(15b)

In this sense, we don’t need to calculate z;; explicitly,
resulting in lower space and computational complexity.
The calculation of (15b) is dominated by the forward
and backward FFTs, hence the computational complexity
of kernel vector k,(x) is reduced to O(nlogn). For
implementation purpose, the norm in (15b) is computed as
(16) in frequency domain using the Parseval’s theorem, thus
the original images z and x don’t need to be stored.

1 1
Ka(X) = h(gHﬁH2 + 5||2||2 -2 F 1 (x©7%). (16)

One of the relevant work of KCC is kernelized correlation
filter (KCF) (Henriques et al. 2015). The difference is that
KCEF is built on ridge regression and is limited to non-
weighted kernel functions and circulant training samples.
While KCC can be applied to predict affine transformations.
More details about this is presented in (Wang et al. 2018b).

6 Translation estimation

Based on KCC, the translational pattern of an orthogonal
image can be estimated by regarding it as a test sample.



Figure 4. The left image (a) is an example of orthogonal depth
image from Fig. 3. The corresponding well-matched points are
shown in the right image (b) by pixel intensities. The higher the
brightness is, the more confidence the matches have.

6.1 Image translation estimation

To make the correlation output distinctive, we simply set
the first element of g as 1, while all the others as 0, i.e.
gjo,0) = 1, where the bracket [-] is for element indexing
(starting from 0). The explanation is that the shift of value 1
in correlation output corresponds to the shift of test image.
Because of noises and occlusion, it is impossible to get the
exact peak value 1. Instead, the location of the maximum
value is used to find the translation:

[Z, 9] = arg max .7-';;} (Rz(x) © h¥)
(2y] ’

a7

g[i,j](x)
Then the predicted translation [tz,ty]T
image is obtained:

of orthogonal

[te,ty)" =7 [7,9]" (18)
The complexity of (17) is bounded by the calculation of
kernel vector and the inverse FFT, hence the process of
image translation estimation is of complexity O(n log(n)).

We next present the estimation of covariance afz
and afy. Intuitively, the value of each position in the
correlation output indicates the estimation confidence of the
corresponding translation, thus the estimation covariance
can be computed as the covariance of relative weighted
translation to the peak. In the experiments, we find that
the normalized correlation output g(x)/ > g(x) can be
approximated by a Gaussion distribution, in which the
center is located at the peak (Wang et al. 2017b). Therefore,
we approximate the covariance by using the peak value of a
standard 2-D Gaussian function, which is 1/(27c?), so that

- > g(x)

~ 27- maxg(x)

2 _ 2 _
0%, = O,

19)

6.2 Depth translation estimation

The overlap of orthogonal image x can be matched with
key-frame z, if x is shifted back with [Z, 7] elements.

Inspired by this, the camera motion in the depth direction
can be estimated in (20a) which averages the depth
differences of the matched pixels. To eliminate the influence
of dynamic points, it only takes the well-matched pixels that
is defined by the set W in (20b).

1 . .
== Wi 2 (SHi,m)(X[i,j]) - Z[i,j]) . (20a)
(i,5)EW
by ] c,D c,D
W = {7’7J P (S(f[i’yg])(x[;’]]) - Z[i,_j]) < Tc,d} s (20b)

where the operator | - | returns the number of elements in a
set and p( - ) is a general objective function (L;-norm in our
tests). The moving objects naturally cannot be matched with
shifted image S(_z j)(x), thus the parameters 7, and T}
are designed to control the elimination of dynamic points.

One of the advantages of (20) is that it only requires
the average differences of depth image which is extremely
fast to compute and all the well-matched points are able to
contribute to the estimation, resulting in the robustness to
depth noises. The estimated variance can be obtained via
direct calculation:

of = Var
© a)ew

(8(*[i,ﬂ])(xﬁ,j]) - Z?ﬂ) - @b

Hence, the complexity of depth translation estimation
is O(n). Fig. 4 presents an example for orthogonal depth
image and the corresponding well-matched points. Until
now, the translation of a point cloud relative to the key-
frame is obtained in all three directions.

7 Key-frame selection

As the camera moves, the overlap between current frame
and key-frame may decrease. Hence the peak value of the
correlation output may not be distinct enough to determine
the translation. In this case, we need to create new key-
frames to have better matching quality. Since the new
frames will be only matched with their nearest key-frames,
estimation error will be accumulated. Therefore, we need to
be very careful in creating key-frames. This section presents
the conditions for key-frame selection. Section 9 will show
that the accumulated error is corrected by loop closure.
Key-frame selection has been studied. For example, DVO
(Kerl et al. 2013a) uses the logarithmic determinant of
the error distribution covariance matrix to determine key-
frames. PTAM (Klein and Murray 2007) creates several
conditions: the distance to the last key-frame is large
enough; at least twenty key-frames are passed. ORB-SLAM
(Mur-Artal et al. 2015) adds the condition: a minimum
percentage of tracked features must be reached. However,
these conditions are designed in an ad-hoc way and is not
suitable for our scenario, since we use different techniques.
We argue that the condition for creating key-frames
should be able to represent the matching quality. However,
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Figure 5. The first 200 frames of a sequence are extracted to
show the changes of PSR with respect to frame number. Only
when the PSR of the correlation output goes below Ti, a new
key-frame will be created. The point clouds will be fused with the
key-frame when PSR is higher than T'y,.

the overlap of two frames is not suitable, since it may
not be proportional to the matching quality because
of the existence of dynamic objects. Considering the
computational cost, we use a very simple criterion in (22),
i.e. peak to sidelobe ratio (PSR), which is a measurement of
peak strength (Bolme et al. 2010). It splits the correlation
output g(x) into the peak and the sidelobe which contains
the rest of pixels excluding the peak.

max g(x) —

Py (x) = BTy, (22)

Os

where ys and o are the mean and standard deviation of
the sidelobe. A straightforward explanation is that the peak
strength of the correlation output indicates the matching
confidence level. In this sense, the desired output with
single peak has infinite peak strength. Ps,.(x) is regarded
as a trigger to insert a new key-frame into the map when
it is smaller than Tx. The criterion (22) is not only able
to control the minimum confidence of each matching, but
also save computational time, especially when the camera
is kept still or moving slowly since there is no new training
data is required. Only the calculation of mean and standard
deviation of the sidelobe are performed in (22), hence the
complexity for key-frame selection is O(n).

Another important capability of (22) is to control the
inertial drift compensation. In case of sudden magnetic
interference or dynamic inertial biases, (22) will result
in creation of more key-frames; (19) and (21) will result
in larger estimation covariances. As a result, the back-
end optimization will have more information for finer
relocalization, which has a greater weight in pose graph,
resulting in higher chance of recovering the true inertial
states. More details about back-end optimization and loop
closure will be presented in Section 9.

8 Map refinement and fusion

To reduce the complexity, only the key-frames are selected
to represent a map. As mentioned earlier, not all the pixels
of orthogonal images can be reprojected by valid points,

Figure 6. (a) is a new key-frame. (b) is the refined key-frame
in real-time. Tests show that the “black holes” in the original
orthogonal image can be filled by subsequent matched images
based on (23). (c) and (d) are the same part of the new and refined
key-frame in (a) and (b), respectively. Note that the keyboard is
well complemented. The moving average operation will not make
it blurred, as long as the image translation is estimated correctly.

and some black holes may appear. A very simple idea is
to complement the missing information of the key-frame z
by the matched non-key-frames xj. This is useful when the
criterion (22) is not satisfied, i.e. the camera keeps still or
moves slowly.

We first define a weight vector w € R™=*"v for each
frame. The element of w presents the weight of the
corresponding pixel to be fused. Each time a frame xj, is
acquired, its corresponding weight vector wt is initialized
as a binary matrix, i.e. wj < {0, 1}" where 1 or 0 indicates
whether that pixel can be fused or not.

The weight vector w” for the key-frame is the element-
wise summation of wi that has been fused. Initially, w? is
simply set as wi when x, is selected as a new key-frame.
Therefore, the map fusion process can be expressed as a
moving average in (23) which is performed in both color
and depth images.

Sk = W+ S(—fz,g) (Wi) + e, 23
o (w* ©2° + Sz (W ©x})) 7 (23b)
Sk
Do (W © 27 + S jz,5) (Wi © (x§ —t2))) , (230)
Sk
W W+ Sz (Wh), (23d)

where e is a small scalar (10~7) to prevent division by 0.
Because of the dynamic points and outliers, some valid
points in xj, can not be matched with the key-frame. Hence,
we remove the unmatched points before (23) is performed.
The elements of wi corresponding to the unmatched points



are set to 0 as in (24), so that they cannot be fused into the
key-frames.

where the set W defined in (20b) contains the indexes of all
matched points. To obtain a higher quality map, we perform
(23) only when Py,.(x)) > Taq where T4 is a parameter to
control the confidence of map fusion and T’y > Ti.

The PSR value plays an important role in our algorithm.
Fig. 5 presents an example for the changes of PSR in terms
of frames. This sequence is extracted from the first 200
frames of freiburgl_desk from TUM dataset (Sturm et al.
2012). It can be seen that when the matching confidence is
lower than T, a new key-frame will be created, so that the
matching confidence returns to a high value.

Since all the operations in (23) are element-wise, the
complexity of map fusion process is O(n). Fig. 6 gives an
example where a key-frame is refined by non-key-frames.
It demonstrates that the missing information of key-frames
can be complemented, so that more details are preserved.

9 Loop closure

9.1 Relocalization

The relocalization is checked among key-frames. To
“memorize” the visual appearances, we extract and save
1000 ORB features (Rublee et al. 2011) for every
key-frames. Since ORB feature descriptor is binary, it
allows quick comparison by direct Hamming distance.
Moreover, in order to perform quick image retrieval for
relocalization, Bag-of-Words model (Nister and Stewenius
2006) is applied to re-represent ORB key-frame features
by visual words. Moreover, these visual words are taken
from a pretrained dictionary that is similar to the one
deployed in ORB-SLAM?2. The vocabulary, pretrained
with Bovisa 2008-09-01 dataset (Bonarini et al. 2006),
contains 1 million words, arranged in 6 levels, each with
10 clusters (Mur-Artal and Tardés 2017). The relocalization
mechanism is implemented based on the excellent work of
DBoW?2. Firstly, potential match pairs (b;, b,—,), where b,
is the bag of key-frame ¢, are identified by a normalized
similarity score (Galvez-Lopez and Tardos 2012).

S(bt,bt,j)
by, by j) = ——% 25
77( ty Ut j) S(bhbt—l)’ ( )
where s is L1-score between two bags:
116 b;
s(biybj)=1— |~ — (26)
’ 211l [b]

These candidates then undergo a second test to determine
if their relative transformation and PSR value are within a
threshold.

9.2 Pose graph optimization

To correct accumulated error, we optimize a pose graph
upon loop closure detection. A pose graph, with key-frames
as SE(3) nodes interconnected by the relative transform
and covariance estimation, is incrementally constructed as
new key-frames are inserted. Once confident relocalization
is available, we minimize the sum of squared error over the
global key-frame trajectory using the Lavenberg-Marquardt
algorithm. Our pose-graph optimization scheme leverages
on the existing implementation of gZo (Kummerle et al.
2011). Different from the preliminary version (Wang et al.
2017a), where the pose is recoupled by loosely coupled
fusion, the back-end pose graph can correct both inertial
and odometry drift. Moreover, since only key-frames are
involved, the runtime is dominated by the odometry part.

In the experiments, we find that such feature-based
method is sometimes sensitive to the pseudo-features which
are produced by light reflections via pieces of glass,
resulting in wrong trajectory optimization. To overcome
this problem, we implement a simple false relocalization
detection by comparing with the front-end odometry. If
the results of graph optimization is too far away from the
odomery, we simply reject such relocalization.

10 Experimental results

Throughout this paper, a set of non-iterative algorithms
have been designed to reduce the complexity of the
front-end of a RGB-D-inertial SLAM system. We will
evaluate the system both quantitatively and qualitatively in
terms of dense mapping, trajectory estimation and runtime
efficiency. We also test the performance on micro-devices.

10.1 Implementation

The framework is implemented using FFTW3 (Frigo and
Johnson 2005) and Eigen (Guennebaud and Jacob 2010)
libraries for FFT and matrix calculation. The system runs
in ROS (Quigley et al. 2009) and is pre-calibrated using the
Kalibr toolbox (Furgale et al. 2013). The inertial and visual
measurements are simply synchronized using the ROS
timestamp. Due to the communication channel delay, this
will introduce a short time difference. However, we find that
the performance is acceptable. We expect that a hardware
triggering synchronization produces better performance.

In the experiments, the Gaussian kernel is applied in (12)
with a standard deviation of 0.2 pixels. The regularization
term A in solution (11), the matching difference parameters
T, and T, in (20b) are all set to 0.1. It is found that these
parameters are not sensitive to the test environments, since
different scenarios and sensors are tested and the results are
not much affected by different choices of these parameters.
The PSR thresholds Ty and T'h are set to 50 and 100,
respectively.
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Table 1. Simulation performance of ATE RMSE, mean, and median error on TUM dataset. ‘Dynamic’ means whether dynamic objects
are contained in the corresponding sequence.

Dataset RMSE (m) Mean (m) Median (m) Std(m) o(m/s) @(°/s) Dynamic
freiburgl _rpy 0.062 0.054 0.049 0.031 0.062  50.15
freiburgl xyz 0.011 0.010 0.008 0.006 0.244 8.92
freiburgl_desk 0.025 0.024 0.022 0.009 0.413 23.32
freiburgl_desk2 0.055 0.048 0.041 0.028 0426  29.31
freiburgl_plant 0.103 0.091 0.079 0.049 0.365 27.89
freiburgl_room 0.128 0.112 0.098 0.062 0.334 29.88
freiburg2_rpy 0.025 0.021 0.018 0.013 0.014 5.77
freiburg2_xyz 0.012 0.011 0.010 0.005 0.058 1.72
freiburg3_cabinet 0.078 0.076 0.076 0.021 0.216 10.25
freiburg3_large_cabinet 0.106 0.096 0.091 0.066 0.362 8.75
freiburg3_sitting_rpy 0.036 0.027 0.021 0.023 0.042 2384 v
freiburg3_sitting_xyz 0.031 0.029 0.028 0.012 0.132 3.56 v
freiburg3_sitting_static 0.006 0.005 0.006 0.003 0.011 1.70 v
freiburg3_walking_xyz 0.056 0.044 0.037 0.035 0.208 5.49 v
freiburg3_walking_static 0.024 0.018 0.014 0.016 0.012 1.39 v
freiburg3_walking_halfsphere 0.115 0.094 0.078 0.066 0.221 8.27 v
freiburg3_long_office_household 0.033 0.031 0.030 0.011 0.249 10.19
freiburg3_structure_texture_near 0.019 0.018 0.017 0.006 0.141 7.68
freiburg3_structure_texture_far 0.014 0.013 0.012 0.005 0.193 4.32

Figure 7. Figure (a) and (b) are the dense reconstruction of our lab. The panorama of this room is given in Figure (c). This environment
is quite challenging for feature-based methods, since there are many feature-less area and light reflections produced by pieces of glass.

10.2  Simulation on TUM dataset that provides synchronized ground truth from a motion

capture system, which is also used to simulate inertial
We first evaluate the performance of trajectory estimation  measurements in the tests. The accuracy in terms of

using the TUM RGB-D benchmark (Sturm et al. 2012)
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Figure 8. The examples of color (first row) and depth (second
row) images, in which lots of specular reflections and featureless
regions can be found.

absolute trajectory (ATE) root-mean-square error (RMSE),
mean error, and median error are listed in Table 1, where
the standard deviation of RMSE, maximum error, average
velocity and angular rate are also given. More details about
the calculation of these metrics can be found in (Sturm
et al. 2012). In comparison, all estimated camera poses are
associated with the ground truth by timestamp.

Comparable performance on this dataset can be found
in state-of-the-art works, e.g. Volumetric Fusion (Whelan
et al. 2015a), RGB-D SLAM2 (Endres et al. 2014),
ElasticFusion (Whelan et al. 2016), and ORB-SLAM?2
(RGB-D) (Mur-Artal et al. 2015; Mur-Artal and Tardds
2017). Although we cannot see a significant improvement
on accuracy (we get better results in some sequences,
but the numbers are still on the same magnitude), our
framework can run much faster (2x—4x), and perform
well on some scenarios which are challenging for other
methods, as seen in the following sections.

10.3 Dense mapping

In this section, we present the qualitative performance of
in-door dense reconstruction. Fig. 7 presents the 3-D map
of our lab, that is generated in real-time and shown from
different point of view in (a) and (b), respectively. The
full view of this room is shown in Fig. 7 (c) where large
featureless area and visual pseudo-features produced by
pieces of glass can be seen. This environment is quite
challenging for feature-based methods, since the pseudo-
features will move along with the camera movement, which
will produce wrong pose estimation. For our method, the
kernel cross-correlator matches the point cloud as a whole,
regardless the distinct features. Therefore, our method is
insensitive to the visual corner outliers and work better
in such situations. Note that the back-end of our system
sometimes also produces false relocalization due to the

feature outliers, while most of them are rejected by the
front-end odometry stated in Section 9.2.

In (Wang et al. 2017b), we also constructed the
dense map for the same environment, which requires the
aids from extern ultra-wideband (UWB) anchors. Due to
the comprehensive improvements in this paper, e.g. the
dynamic resolution mechanism, the external sensors are not
needed any more. The performance of other methods in
such environment is presented in next section.

10.4  Performance on benchmark

10.4.1 Dataset and platform The experimental bench-
mark® contains 7 sequences that are totally 39.7 GB and
recorded in an indoor environment. The ground truth is
obtained from a highly accurate motion capture system
(Vicon). Except for the ground truth, this benchmark
include measurements from Kinect at 30Hz, inertial mea-
surements from myAHRS+3 at 100Hz, which is a low
cost high performance inertial sensor containing a 16-bit
3-axis gyroscope, a 16-bit 3-axis accelerometer, and a 13-
bit 3-axis magnetometer. Some of the image examples are
shown in Fig. 8. They are quite challenging for vision-based
methods because there are lots of specular reflections and
featureless regions. All the experiments are conducted on
a standard PC running Ubuntu with an Intel Core 17-4700
CPU and 8G RAM.

10.4.2  Baseline Algorithms The proposed odometry sys-
tem will be compared with some state-of-the-art methods,
i.e. RGB-D SLAM?2 (Endres et al. 2014), ElasticFusion
(Whelan et al. 2016), and ORB-SLAM?2 (RGB-D) (Mur-
Artal et al. 2015; Mur-Artal and Tardés 2017). Their per-
formance is obtained using the same platform mentioned in
Section 10.4.1 based on their open source implementation.

Although these methods do not include inertial fusion,
they are still excellent baseline and have been extensively
tested by the robotic community. The implementation of
RGB-D-inertial odometry method, e.g. (Laidlow et al.
2017) is unavailable, hence we are unable to compare.
The traditional tightly-coupled or loosely-coupled inertial
fusion methods typically introduce additional complexity
due to the additional filtering or optimization process for the
large number of inertial measurements. However, we will
show that the proposed non-iterative inertial fusion method
reduce the complexity of pure visual system dramatically.
For accuracy, it will be shown that the proposed method
doesn’t reduce the performance of pure visual methods and
even performs better in some scenarios that are channeling
for traditional methods.

Since ElsticFusion has no ROS interface, a simple ROS
wrapper is implemented to read images through ROS
communication protocol, while the runtime measurement
will not include the communication time. Some of the above
methods optimize the whole trajectory in the back-end,
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Table 2. Root mean square error (RMSE) comparison on the benchmark. Only instant pose estimation is accepted.

Benchmark ours ORB-SLAM2 ElasticFusion | RGB-D SLAM2
RMSE std. | RMSE std. | RMSE std. | RMSE std.

01 0.106  0.038 | 0.323 0.095 | 0.439 0.165 | 0.122  0.060
02 0.373  0.230 - - 0.602 0.185 | 0.575 0.417
03 0.123 0.055 | 0.142 0.079 | 0.444 0.171 | 0.191 0.057
04 0.076  0.037 | 0.058 0.029 | 0.123 0.058 | 0.124  0.055
05 0.093 0.040 | 0.513 0.219 | 0.281 0.121 - -
06 0.113 0.045 | 0.128 0.057 | 0.355 0.139 | 0.543  0.155
07 0.021  0.009 | 0.025 0.015 | 0.024 0.012 | 0.031 0.022

Table 3. Mean error and maximum error comparison on the benchmark. Only instant pose estimation is accepted.

Benchmark ours ORB-SLAM?2 ElasticFusion RGB-D SLAM2
MEAN MAX | MEAN MAX | MEAN MAX | MEAN MAX
01 0.099 0.261 0.308 0.508 | 0.407 0.688 | 0.106  0.248
02 0.294 1.020 - - 0.572 1.067 | 0.397 1.527
03 0.110 0.300 | 0.118 0380 | 0410 0.778 | 0.182  0.389
04 0.066 0.211 0.051 0.150 | 0.109 0.256 | 0.111 0.470
05 0.084 0.183 | 0.464 1.003 | 0.254  0.557 - -
06 0.103  0.209 | 0.114 0.352 | 0.327 0.591 0.520  0.840
07 0.019 0.053 | 0.021 0.065 | 0.021 0.050 | 0.022 0.186

Table 4. Real-time efficiency comparison on Kinect dataset with
PC platform. All the data are give by average update rate (Hz).

Dataset | ours | ORB-SLAM?2 | RGB-D SLAM2

01 734 41.1 18.7

02 82.2 - 20.1

03 81.6 41.5 18.3

04 80.7 45.6 20.9

05 77.2 42.7 21.1

06 77.8 46.6 21.6

07 85.1 50.0 23.3
overall | 79.7 44.6 20.6

and output the optimized trajectory only after the program
is terminated. This is not suitable for low-latency robotic
systems. To evaluate and compare real-time performance,
we only accept the instant pose estimation.

10.4.3 Accuracy Comparison The accuracy is evaluated
in terms of ATE RMSE and absolute mean error (MEAN).
The comparison is reported in Table 2 and Table 3. It can
be seen that the proposed method achieves similar accuracy
with all the other methods. We notice that the accuracy of
feature-based methods, ORB-SLAM?2 and RGB-D SLAM2
vary a lot in different datasets, this may be due to the
existence of specular reflection and features-less regions.
This phenomenon indicates that the feature-based methods

are sensitive to feature outliers. In contrast, ElasticFusion
performs similar for different datasets. The results of some
sequences that are obviously wrong are not reported, this
is because we find those methods fail to give a well pose
optimization due to feature outliers.

It is noticed that the accuracy of ORB-SLAM2 (RGB-
D) is higher when true visual local loop closure is available
frequently, while our method works better in feature-less
and pseudo-feature environments. One of the reasons may
be that the KCC used in our method is more robust to object
distortion and occlusion. In this sense, the proposed non-
iterative framework is a good alternative solution to the
front-end of RGB-D-inertial SLAM system.

10.4.4 Efficiency Comparison The efficiency perfor-
mance is evaluated in terms of update rate (runtime),
which is reported in Table 4. The proposed framework
outperforms all the other methods. Note that the reported
runtime of our method is the summation of both tracking
and mapping process; while that of the other methods only
contain the tracking time. This is because the tracking
thread is independent of the mapping in other methods,
while they are processed sequentially in ours. The runtime
of our method varies for different sequences according to
the number of trainings. If landmarks change rapidly, our
method has to train new models, resulting in a little bit
increasing of runtime.



— ground truth
— estimated
— difference

R rpill
-

g 3

/&‘}

o o

g

s
Y )
({ o]\

\
{

|
4
PR
s &
38
./\
1
&

4

Jl. S &
%\\ “_J 01wy y oy ‘m% -o [_!,/ (//

-08 -06 -04 -02 00 02 04 —0.75 -0.50 —0.25 0.00 0.25 0.50

-0.75 -0.50 -0.25 0.00 025 0.50

-0.75 -0.50 -0.25 0.00 025 050 -0.75 —0.50 —0.25 0.00 025 0.50

Figure 9. The trajectory estimation an ultra-low power CPU Atom x5-Z8350 with Scenario Design Power (SDP) of 2W.

Figure 10. A dense mapping of office cubicles. It is constructed in real-time on the ultra-low power CPU Atom x5-Z8350. The map is
sent to a remote server in real-time only for visualization purpose (no post-processing).

Note that we don’t report the efficiency of ElasticFusion
in Table 4, since it provides only GPU implementation,
while the other methods are running on pure CPU. The
platform mentioned in Section 10.4.1 contains a NVIDIA
Quadro 2000 GPU, in which the average update rate for
ElasticFusion is about 5.1 Hz. We believe that ElasticFusion
is able to run faster if more powerful GPU is provided,
while the efficiency comparison is not meaningful.

10.5 Performance on micro-device

10.5.1 Platform The real-time performance on low
power device is crucial for micro-robot systems. As
shown before, the proposed system requires the least
computational resources, thus we are able to test it on
micro-devices. We choose the Intel robotic development kit,
that includes RealSense R200 RGB-D camera and a credit
card sized computational board equipped with an ultra-low
power processor Atom x5-Z8350. We also integrate it with
an inertial sensor myAHRS+ which is mentioned in Section
10.4.1. Running at 1.44GHz with 2G RAM, this platform is
very difficult for most of the state-of-the-art dense mapping
algorithms to run in real-time (30Hz).

10.5.2  Performance Limited by the on-board memory,
we cannot evaluate the performance using benchmarks.
Instead, we will test the real-time performance in terms of
average runtime, trajectory estimation, and dense mapping.

Table 5. Average runtime (ms) on the ultra low power platform.{

Processor | Method | Tracking | Mapping | Update
ours 26.9 54 323

Z

X80 orBa | 167 499 >167

TAll tests are using the RGB-D image with size 640 x 480. The
mapping process of ORB-SLAM? is parallel to tracking.

(i) We list the average tracking and mapping runtime in
Table 5, where the performance of ORB-SLAM?2 (RBG-
D) is also given for comparison. It can be seen that our
system requires much less runtime compared with ORB-
SLAM?2. The tracking and mapping process of ORB-SLAM
is parallel to each other and cannot be simply summed up.

(i1) Some examples of the overhead trajectory estimation
is shown in Fig. 9, where the ground truth is from the Vicon
system. The estimated poses are associated with the truth
values by the red lines according to the ROS timestamp. We
cannot report the accuracy comparison with ORB-SLAM?2,
since it cannot work in real-time (a lot of dropped frames).

(iii) An example for real-time dense mapping of our
working area (cubicles) is shown in Fig. 10. The map is
constructed and fused real-time by the on-board processor.
Meanwhile, the key-frames (orthogonal images) are sent to
a remote server for visualization without post-processing.
Some black holes can be seen inside the map, the reasons
could be that the inside IR sensors seem to have no
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response to some specific dark material, resulting in no
depth information. Since the key-frame fusion algorithm
in (23) requires the complementary information from non-
key-frames, it cannot work in such situation.

11 Conclusion

In this paper, we proposed a non-iterative front-end for
the RGB-D-inertial SLAM system. Combining with non-
iterative front-end and a lightweight iterative back-end, our
system dramatically reduces the computational complexity.
It was demonstrated that the odometry system can be
accelerated based on an on-line training process. To the best
of our knowledge, the proposed framework may be the first
non-iterative solution to the front-end of a dense mapping
system. We also demonstrated that it is able to achieve much
faster speed and comparable accuracy with the state-of-the-
art methods.
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Notes
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