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Abstract

Having multiple robots collaboratively tackling a particular task is sometimes more desirable
than doing so with one complicated robot. That motivation has been aspiring countless re-
searches on "swarm”, also formally called Multi-agent System, for decades. This project is
an attempt to implement a functional multi-agent system, based on Robot Operating System,
tested on two heterogeneous robots. Various implementations in the past assume each vehicle
is one agent which makes agents become hardware-specific. However, to achieve a more robust
system, in this project, the concept of agent is constrained to a software node, separated from
the concept of vehicle, which is a hardware platform. In this way, agents are not dependent of
the type of vehicle or hardware capabilities, and thus can be generalized into three types: Com-
mand, Data and Action. Furthermore, with this concept, one platform now can carry more than
one agents and agents could flexibly migrate from one hardware platform to another through
the network in the case of hardware failures. In this project, two types of vehicle are used: un-
manned ground vehicle (UGV) and unmanned aerial vehicle (UAV). To ensure that individual
robots are ready for collaborative missions, they are equipped with various necessary hardwares
and software controllers. The underlying theories, the designs and selections of hardware and
the implementations and tests of operation are also discussed. Last but not least, precision
landing experiments, which involves simultaneous independent control of multiple robots are
conducted to verify the robustness of the implementation. During the experiments, the UAV
attempts to search and land on the UGV. The results show a consistent accuracy of 10cm for
both cases of static and moving UGV. However, the UAV took longer time to catchup and
approach in the case of moving UGV.
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1 Introduction

1.1 Motivation

Multi-agent system (MAS) refers to a system of multiple robots set out for a common goal.
MAS has been an active research topic for the past decades [5], with many promising future
applications including Traffic Control, Formation Control [9], Cooperative Manipulation [20],
Collaborative Obstacle Avoidance [4], Foraging [8] and many others. The MAS is an appealing
research topic because an MAS system is usually a stochastic, non-linear one, which is challeng-
ing to pin down a mathematical model. Besides, practical attractiveness of MAS pertains when
certain tasks are either inherently too complex for a single robot to accomplish or significantly
beneficial to, instead, be carried out by many simpler/cheaper robots. Moreover, some of MAS
research works could also shed lights into more complicated social and biological behaviors such
as organization theory, cognitive psychology or animal ethology.

In many literatures, multi-agent systems (MAS) are also coined by the term ”swarm” [8], which
further emphasize its distributed characteristics. A swarm does not have a leader, or a central-
ized control agent, that coordinate the activities of its sub-individuals. This implies that the
system is robust against weaknesses of individuals, flexible with changes and quickly scalable if
necessary.

1.2 Objectives and scopes

Through literature survey, the author has come to conclude that a functional swarm would
require three elements: a set of individual robots, a shared goal and a network between them.
Firstly, a goal gives meanings to actions that follow it and a swarm is of no exception. In many
cases, such as the Social Foraging problem, the goal is the benchmark to compare the utility of
a distributed system against that of centralized ones. Secondly, a network between robots de-
termines the mode of operation in a swarm. According to [5], three main modes of interaction
are interaction via environment, interaction via sensing and interaction via communication.
Last but not least, even though the complexity of swarm sometimes shadows the appeal of
individual mobile robots, it is important to note that any swarm would not be possible without
the individuals in it. Many a time, the utility of a MAS is driven or limited by the individual
capabilities.

This project conveys an undergraduate student’s attempt to implement a multi-agent system,
bearing in mind the three important pillars that stand the concept of swarms: common goal,
individual robots and inter-robot network. In this report, the terms 'multi-agent system (MAS)’
and 'swarm’ would be used interchangeably, even though other literatures might caution such
practice.

1.3 Report organization

The structure of this report is illustrated in Figure 1. Firstly, for individual robots, the author
attempts to revisit important concepts that build up current state-of-the-art capabilities of
mobile robots. Most notable corner stones are Kalman Filter, Extended Kalman Filters, which
allow robust attitude estimation and derive solutions to traditional problem of Simultaneous
Localization and Mapping (SLAM). SLAM itself is also one of the most important capabilities
that make robots truly autonomous [23], which is why tremendous works has been invested into
various approaches of SLAM solutions, including traditional landmark-based SLAM, laserscan-
based SLAM or vision-based SLAM. These concepts would be briefly revisited in Section 2.1
to 2.5 of this report.

Moreover, since this project involves non-homogeneous robots, including one ground mobile
robot (UGV) and one aerial vehicle (UAV), the hardware capabilities, including actuators and
sensors, are also briefly discussed in Section 3.2 and 3.3. In order to simulate and control these
vehicles, their mathematical models are also visited in section 2.5 and 2.6.



The ultimate aim of this project is to arrive at a practical concepts and a functional imple-
mentation and a flexible testbed for MAS. The author believes that a scalable and robust
implementation of MAS comes with a distinction between two usually interchangeably used
concepts: agent and vehicle. In this project, vehicles refer to mobile hardware units, whereas
agents refer to software units that perform a specific tasks. With this distinction, a vehicle
could carry multiple agents and, because of being a software in a networked system, agents can
migrate from one vehicle to another in case of vehicle failures. Moreover, the author classified
agents into three types: Command agent, Data agent and Action agent. The implementation
and deployment of these agents are vehicle independent.

To verify the performance of the software implementation and the scalability of the proposed
MAS concept, various experiments were conducted. Individual tests, including velocity control,
position control, SLAM are done on both omni-direction ground vehicle and aerial vehicles.
Precision landing experiments, both on static landing pad and moving landing pad, were also
conducted to verify performance of multiple robots and multiple agents when working together.
Last but not least, as shown in Figure 1, this project still left a huge corner stone untouched, due
to time constraint and limited resources. That important gap is the Intelligence of individual
robots, which refers to the ability of individual robot to ’learn’ from its sensory perception and
obtain non-programmatic understandings of the environments that eventually lead to meaning-
ful yet non-preprogrammed and logic-based reactions.

Swarm
[:Section 4.4:]
I
Common goal Individual Network
(Section 4.4.1) robots (Section 4.4.1)

[ |
Hardware Software
(Section 3) (Section 2&4)

. .

Actuator Sensor State estimation Control
Communicator Intelligence
(Section 3.2) (Section 3.3) (Section 2.1-2 .4) (Section 2.5-2.6)
[:Section 43] (:Section 4.1—4.?:]
f J i X

Figure 1: Report structure



2 Theoretical background
2.1 Kalman Filter (KF) and Extended Kalman Filter (EKF)

The KF and the EKF are one of the most important algorithms in modern robotics. Among
wide range of applications, it provides the basis for vehicle state estimation and Simultaneous
Localization and Mapping (SLAM), which will be discussed in later section of this article. In
this section, for the ease of reading, time will be written in subscript. For example x(t) will be
written as x;.

The KF assumes a robot model where the state of the robot evolves overtime from x; to @411
obeying equation (1), and state measurement z;;1 obeying equation (2):

Ti1 = Fp1x + Bepiugr +wig (1)

ziy1 = Hyy@q + v (2)

where:

Fi,1 is state-transition matrix,

By is control input matrix,

H, ., is measurement matrix,

wyy1 is process noise with covariance Qy41,

V41 Is measurement noise with covariance Ry .

441 is state estimate with covariance Piyq
Provided with such model, the KF can recursively perform state estimation via two steps: state
prediction (3) (4) and measurement update (5) (4).

Tir1e = Fer1@yy + Bryaue
T
P =F Py Fr ) + Qi
Top)i41 = Teqrpe + K1 (2ep1 — He1®epp)

P11 =Py — K1 Hi 1 Py
Where Kalman gain K, is defined as
Ky =P Hl ((Hi Py HY  + Re) ™ (7)

The Extended Kalman Filter (EKF) possesses similar characteristics. It also requires a model
comprising of state transition and measurement update, both accompanied by Gaussian noise,
similar to equations (1) and (2). However, EKF can be used for non-linear systems by linearizing
the system dynamics about its most recent estimate through updating &;, K; and P; at each
iteration [22].

2.2 Simultaneous localization and mapping (SLAM)

Simultaneous localization and mapping (SLAM), as the name speaks for itself, is a problem
where a robot is required to determine its own pose in an unknown environment, while at the
same time trying to build a consistent map of the environment.
Figure 2 demonstrates a typical process of SLAM where a robot estimates its position based
on one or multiple observed landmark in the environment and then subsequently estimates the
position of surrounding landmark(s), or also called "mapping”. Mathematically, the SLAM
problem can be described as the relationship and co-evolution of:

- Xj: the robot pose,

- uy: the robot control vector,

- m;: the landmark position and

- z;: the landmark observation
where k represents the time index of the parameters. Putting the various parameters into its
timeseries as:

- Xo:x = { Xo:k—1, Xk }: set of vehicle states

- Uox = {Ug.k—1, ug}: set of control inputs
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Figure 2: SLAM problem illustration [1]

- mg., = { ug, ug, ..., u,}: set of landmark locations

- Zok = { Zo.;—1, zr}: set of landmark observations
If the SLAM problem is to be modeled in probabilistic form, it would be "to determine the
probability distribution of the robot pose and the location(s) of landmark(s), given the history
of control input, the history of landmark observations and initial assumingly known pose”. Or:

P(XkJmIZO:kaO:kaxo) (8)

For mobile robot application, this problem is often solved recursively using Bayesian Theorem,
where a state transition model and an observation model are required. Besides, an important
assumption made, also known as Markov model assumption, is that the robot state x; depends
only on the immediate previous state x;_; and the input u; and independent of landmarks
observation and map.

Firstly, the state transition model (9) represents the probabilistic distribution of the robot
pose, provided the priori pose and the current motion input.

P(xp|x—1,ur) 9)

Secondly, the observation model (10) is the probabilistic distribution of the landmark posi-
tion, provided a known robot pose and a set of landmark locations.

P(zk|xk,m) (10)

With the requirements satisfied, the SLAM problem can then be solved recursively with two
steps Prediction (11) and Correction (12) [1].

P(xi,m|Zo:p—1, Ugik, X0) = /P(Xk|xk71,uk)P(kalvm|ZO:k717UO:k717XO)ka71 (11)

P(zy|xx, m)P(x, m|Zo.;—1, Uo:k, Xo)
P(zk|Zo:k—1,Uo:i)

P(xi,m|Zo.i,, Ug., x0) = (12)

In general, there are three common approaches to solving the SLAM problem, namely Extended
Kalman Filter (EKF), Rao-Blackwellised Particle Filter (FastSLAM) and Information Filter.
One of the key draw-backs of traditional SLAM methods, including EKF SLAM and FastSLAM,



is its demanding requirements on observation model and landmark model. Landmarks must be
perceived and their poses must be available in order for traditional SLAM to work. However,
in most practical applications, sensors only partially observe the landmark, which does not
guarantee landmark detection, even if the detection is reliable.

2.3 Laser scan based SLAM

In practice, laser scanners, either 2D or 3D, are widely used for SLAM purposes even though
most of the implementations are not based on traditional SLAM theory. One particular chal-
lenge in implementing stochastic SLAM with laser scan is that landmark recognition from point
clouds is usually difficult. In stead, many applications make use of high scan data rate [11] and
powerful computers to attempt direct scans alignment to determine the pose transform. The
well-known algorithm that represents this approach is Iterative Closest Point (ICP) [3,13]. The
essence of the algorithm is to try to determine the best correlation between two different scans,
using a predefined cost function. The advantage of ICP is that it is theoretically proved to
”always converge monotonically to a local minimum with respect to the mean-square distance
objective function” [3]. The disadvantage of ICP is its complexity, which significantly limits its
application on vehicles that have scarce computational resources.

A summary of ICP algorithm is presented here for readers’ convenience. Let P4 be the scan
obtained in frame A and Pp the scan in frame B. Let T'(X) represents a frame transformation
on a point set X. The goal of ICP is to determine the transformation 4T7 that satisfies

ATB = arg miny(error(T(Pa), Pg))

Innovative variations of ICP also include the use of polar coordinates [6,7], which is natural with
most laser scanners and the use of predefined laser scan templates for fast landmark detection,
which relates ICP to traditional stochastic SLAM [16].

2.4 Vision based SLAM (vSLAM)

Another well-known SLAM method that utilizes camera images is called Visual SLAM (vS-
LAM). Many computer vision literatures also uses the term Bundle Adjustment (BA) to de-
scribe the same concept [24]. The word bundle refers to the beam of light originating from 3D
objects, arriving at the sensor. The word adjust refers to the procedure of alignment, through
which structures and sensor poses (and parameters) are jointly estimated. Similar to ICP, BA
is essentially a problem of iterative error minimization.

Most BA algorithms requires features extraction from raw images. Notable researches on fea-
ture detection can be dated back as early as 1981 to the stereo corner matching of Moravec [15],
which was later improved by Harris [10]. In 2004, Lowe [12] further made the detector scale
invariant and more robust against image local distortion by introducing Scale-Invariant Feature
Transform (SIFT). The usefulness of SIFT was verified by various applications including mobile
robot localization [20] and image stitching [21]. Even though SIFT is robust, it is also computa-
tionally expensive, which is improved by Feature from Accelerated Segment Test (FAST) [18],
Oriented FAST and rotated BRIEF [19] and Speeded Up Robust Feature (SURF) [2].

2.5 Quad-rotor unmanned aerial vehicle (UAV)

Assuming a quadcopter in steady state hovering flight condition, gravitational forces and thrusts
from four motors produce its motion, in the inertial frame. Besides, the attitude estimation
from the IMU, also in inertial frame, is used to control the vehicle. On the other hand, the
thrust output is in copter body frame. Therefore, the dynamics of the quadcopter required
transformation from the body to inertial frame and vice versa. The rotation matrix from
inertial frame to body frame is :

CyCy — CySypSy —CySe —CySeSy  SeSy
R= CQC¢S¢ + C¢S¢ C¢CQC¢ — S¢S¢ —Cng
S¢Se CysSp Cy

10



where S, and C, represent sin(z) and cos(x) respectively and ¢, 0, v are, in inertial frame, the
roll, pitch and yaw angle of the quadcopter.

Body Frame Inertial Frame

s b

Figure 3: Quadcopter frames illustrations

Let the position, linear velocity, attitude and angular velocities in the inertial frame be denoted
as p, P, & and & respectively. We have:

p=(z,y.2)" p=(492"
£=(0,0,0)" £=(,0,4)"
Let w be the angular velocities in the body frame. We have:
1 0 —Sy . .
w= |0 C¢ C@S¢ E = Wﬁ
0 =Sy CoCy

Moreover, the contribution of the motors, in terms of both force and torque, are vital to the
flight dynamics of any multirotor. Assuming negligible motor housing inertia and negligible
rotational acceleration, the force and torque generated by a brushless motor ¢ can be treated
by a simplified model as:

T; ~ kQ? 7 & bO?
where €2 is the RPM of the motor while k and b are constants. Thus, given distance L between
CG and motor axis, the forces and torques generated by all the motors on the copter, in body
frame, can be formulated as

0 Lk(—-0Q2+02)
Tg=| 0 = | LE(-0Q7+Q3)
kX(QF) b(QF — Q7 +0F — Q)

Moreover, assuming the copter is symmetrical about all axes, the moment of inertia can be
formulated as:

L. 0 0
I=(0 I, 0
0 0 L.

Assuming that the aerodynamic drag is proportional to the velocity in the respective direction,
it can be formulated as:

CD, 0 0 T CD,E 0 0
D=|0 Cp, O yl=]10 Cp, O |p
0 0 CDZ z 0 0 CDZ

11



Using Newton’s second law, the linear dynamics of the copter can be formulated as

0
mp=|0 | +RTg+D
mg

Therefore, linear acceleration of the quadcopter in the inertial frame can be formulated as
0 CypSeCy + SySoe Cp, 0 0

p=g|0]| + - SypSeCy — CySe| + | O Cp, 0 |p (13)
1 CoCy 0 0 Cbp,

ED(02)

1

The rotational dynamics has to be analyzed from the body frame due to centripetal forces and
gyroscopic force I':

Io+wx (Iw)+T'=7pg
Therefore, the angular acceleration in body frame is
W=I"'(~wx (Iw)-T+7B)
Hence, the angular acceleration in inertial frame is

.._d._i 1

£fdt£fdt(W w)
_4d
Tt

(14)
(W hHhe + Wl

With (13) and (14), it is possible to model the dynamics of the quadcopter. The model can
then be used for quadcopter control simulation [14]. In order to control the attitude of the
quadcopter, PID controller can be used because of its robustness in performance and simplicity
in implementation [14]. The PID controller output u(t) is based on the error e(t) between
actual state &;4(¢) and desired state &(t).

e(t) =64 &

u(t) = kpe(t) + kr / e(t)dt + kp%e(t)

The actual attitude is obtained by an on-board estimator, with input raw data from gyroscopes
and accelerometers. The control gains can also be fine tuned from trial-and-error methods [14].

2.6 Omni-directional unmanned ground vehicle (UGV)

(8]

Figure 4: UGV Dynamics model

12



Firstly, the motion of a ground vehicle is the combined result from motor power, translated
into traction force F' and the wheel friction R. Frictional force could be perpendicular to the
wheel axis, which translates into rotation motion, or co-linear with wheel axis, which creates
side slip. Even though conventional wheels are designed to avoid side slip, special ones, such as
mecanum wheels, take advantage of this characteristics to increase the degree of freedom. In
Figure 4, friction is denotes as R, and R,,.

Secondly, at any instance, it is possible to determine an Instantaneous Center of Rotation (ISR),
around which point, the motion of the vehicle is purely rotational.

Let the pose of the UGV in the inertial frame be defined as p = (X,Y,0)7. With heading angle
defined, the rotation matrix pR¥ from body frame to earth inertial frame is defined as

RF [cos@ fsinﬂ}
B =

sinf  cosf

Let the torque from each motor be 7;, with each wheel having diameter d,,, the circumferential
force Fy,, and the effective force F' on the ground due to mecanum wheel effect on wheel i are

27’1'
Fy =20
i du)
o
F;, = F,, cos(45) = V2

duy

Therefore, component forces in x and y directions of body frame are

F,, = F,, = sign(i)F; cos(45) = szgn(z);——l
w

which combine into resultant forces and moments as

F, = ngl = $(71+7'2+7'3+7'4) (15)
- 1

F, = ;Fyz = d—w(—ﬁ + 70— T3+ T4) (16)

Mp=b(-Fy, + Fy, + Fpy — Fp,) v a(Fy, — Fy, — Fy, + Fy,) (17)

- adzb(—ﬁ + T+ T3 —T4) (18)

From Equation 15, it can be inferred that the UGV would move in longitudinal direction
when wheels are rotated in the same direction. From Equation 16, UGV would move sideway if
adjacent wheels rotate in the opposite direction. From Equation 18, UGV changes heading when
wheels on the left and right are of inversed rotation. This interesting behavior is illustrated in
Figure 5.

Assuming that the weight is evenly distributed on all 4 wheels and the friction is directly
proportional to ground reaction force and wheel instantaneous contact velocity. Let f, and f,
be the coeflicients of rolling and slipping friction respectively, &; be the longitudinal velocity
and ; lateral velocities in the body frame, the force F' and moment M from friction acting on
the vehicle body can be formulated as

4 4
=1 =1

4 4
mg .
Ry = ZRyi = nyTyi
i=1 i=1
MR = b(me + Rzz + RZB - Rz4) + G’(Ryl - Ry2 - Rya + Ry4)
= bszg(—fh +do + @3 — &) + afyTg(yl — Y2 — Y3 +a4)
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Let 2, ¢ be the vehicle longitudinal and lateral velocities in the body frame. Due to the geometric
constraints between the wheels and vehicles, we have

By =@y =0 —bf
By =iy =i+ b
=9 =y +ad
i3 =1 =19 — ab

Applying Newton’s Second Law, we could arrive at

m 0 0 X F.+ R, cos® —sinf 0
0 m O |Y|=]| F,+Ry sinf  cos 0
0 0 I| |6 Mp + Mg 0 0 1

where m is the mass and I is the moment of inertia of heading rotation.
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Figure 5: Omnidirectional drive mechanism with mecanum wheel [17]
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3 Experimental setup

Each experiment comprises of three main parts: ground truth setup, vehicle setup and onboard
sensor setup. For ground truth, tn this series of experiment, VICON system are deployed to
obtain high quality ground truth data. Vehicle setup comprises of UAV setup and UGV setup.
Onboard sensor setup depends of the planned mission and intended capability of the vehicle.

3.1 VICON system

VICON is a motion capturing system that makes use of video to determine motions of object in
real-time. In this project, the VICON system consists of twelve individual IR cameras. Target
objects, balls in this case, are coated with special material to reflect the IR rays emitted from
the cameras. The IR footage of the balls, captured from multiple cameras could then be used
to determine the position of the ball. Furthermore, by placing reflective balls on an object in a
non symmetrical configuration, the pose of the object can be determined.

In this project, experiments are done with two vehicles, one UAV and one UGV, each of
which is equipped with four reflective balls placed at proper positions to ensure non-symmetry
configuration, clear camera exposure and convenient operation. One example setup in shown
in Figure 9, with the corresponding VICON processed pose shown in Figure 8. With millimeter
grade precision and upto 50Hz data rate, the VICON serves as a good ground truth for checking
quality of vehicle onboard localization, detection and control. In this project, experiments
involve one Unmanned Ground Vehicle (UGV) and one Unmanned Aerial Vehicle (UAV). These
vehicle are setup so that they have the capabilities of self-navigation and inter-communication,
while carrying mission-specific equipments and payloads.

£

Figure 6: A typical reflective ball Figure 7: VICON Bonita camera

Figure 8: Vehicle pose from VICON Figure 9: Actual real vehicle pose

3.2 Vehicle setup
3.2.1 UGV setup

UGV, as the name implied, is a vehicle that capable of autonomous navigation on the ground.
For this series of experiment, to give the UGV greater degree of freedom, we equipped the
UGV with four Swedish omni-directional wheel (omni-wheel). Driven by four independently
controlled motors, such configuration allow the UGV to travel in three direction: longitudinal,
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lateral and rotational. The UGV operates with one 24V Lithium polymer battery. Typical
operation time ranges from 2 to 3 hours.

For some mission, the UGV serves as a static or dynamic target for the UAV to approach and
land on. In order to aid the detection of UGV, the top surface of the UGV is also marked with
two distinct patterns. From Figure 10b, it can also be seen that one of the markers is bigger in
size. The reason is that bigger marker would make it easier for the UAV camera to register from
far distance, while smaller marker would ensure that the camera is able to detect the marker
at very close proximity. The too markers are reproduced in Figure 12 for reader’s reference.

Front view Top view Omni-wheel

Figure 11: UGV setup

Marker 1 Marker 2

Figure 12: Landing markers

3.2.2 UAV setup

For this series of experiment, due to the potential heavy weight of on-board processors and sen-
sors, the UAV is equipped with eight rotors, arranged four contra-rotating pairs configuration.
Such configuration is also named X8, since it has eight motors while the overall appearance
resembles a cross. The UAV runs on one 12V Lithium Polymer battery. Typical operation time
ranges from 5 to 10 minutes. If the mission required extended flight time, second battery might
be deployed.

Front view Top view

Figure 14: UAV setup
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3.3 Omnboard sensor setup
3.3.1 RGB camera

One of the experiment in this project was to test the ability of the UAV to find a predefined
marker which indicated the position of the UAV and subsequently attempted to land on the
marker. In order to identify the marker, a RGB camera is installed on the UAV, facing down-
ward. The camera that we selected for this purpose is produced by IDS, model UI-1221LE for
its high frame rate and wide angle of view, hence allowing faster detection during operation.
Some of the important parameters of the camera are extracted in Table 1 for reader’s interests.
Figure 15b shows a typical camera setup that is installed downward-facing on the UAV.

bare camera with lense and standoff

Figure 16: Camera IDS UI-1221LE setup

Specifications Data
Sensor type CMOS
Sensor size 1/3”
Resolution 752x480

Data rate 87.2 fps
Pixel size 6pm
Weight 16g

Table 1: Key parameters of camera IDS Ul-1221LE

3.3.2 RGB-D camera

In order to allow the UGV to self-localize, vSLAM algorithms, as explained in the previous
parts, could be deployed. The sensor for this purpose is selected to be Kinect 1, manufactured
by Microsoft. The special feature of the Kinnect camera, as shown in Figure 17b, is that it
has an IR emitter and an IR receiver, through which a depth point cloud can be obtained of
the environment in front of the camera can be obtained. As discussed in the previous sections
about vSLAM, the point cloud could aid in features extraction and features matching, thus
could improve the vSLAM performance. Some key parameters of Kinect 1 are reproduced in
Table 2 for readers’ interests.

Even though Kinect is a good sensor for visual navigation, its relatively heavy weight limits
its usefulness for aerial vehicles. Due to constrained capability of UAVs, both in terms of
available lift force and computational resources, RealSense camera is selected to test vSLAM
algorithms that are optimized for UAV on-board operation. From Figure 18b, it is noticeable
that RealSense, made by Intel, has a similar operating mechanism compared to Kinnect 1, with
one normal RGB sensor for image collection and one IR transmitter-receiver pair for depth
measurement. From Table 3, Intel RealSense is much lighter, with only 8 grams, compared to
Kinnect 1 with 430 grams. However, the disadvantage of RealSense is that its IR point cloud
is more susceptible to noise compared to that of Kinect 1.
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Figure 18: Microsoft Kinect 1
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Figure 19: Intel RealSense

Specifications Data Specifications Data
RGB resolution 640x480 RGB resolution 1920x 1080
Horizontal FOV 57 degrees Horizontal FOV 70 degrees
Vertical FOV 43 degrees Vertical FOV 43 degrees
Depth resolution 320%240 Depth resolution 640x480
Min depth distance 0.4m Depth vertical FOV 46 degrees
Max depth distance 4.5m Depth horizontal FOV | 59 degrees
Data rate 30 fps Data rate 30-60 fps
Weight 430g Weight 8g
Table 2: Microsoft Kinect 1 Table 3: Intel RealSense

3.3.3 2D laser scanner

Another method for the UGV to perform SLAM is point cloud matching. In this project the
point cloud is obtained by 2D laser scanner, model UTM30LX produced by Hokuyo. The
laser scanner has a straightforward principle of operation, with one stationary laser emitter
and a rotating inclined mirror producing high frequency laser pulses that will be received at
laser receiver and used to determine the range measurement by time-of-flight principle. This
laser scanner has the advantage of high data rate, low noise and relatively high accuracy. The
detailed specification of this sensor is reproduced in Figure 20 and Table 4 for reader’s interest.
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Figure 20: Hokuyo UTM-30LX Laser Range finder

Specifications Data
Detection range 0.1m to 30m
Close range accuracy | 30mm (range: 0.1 to 10m)
Long range accuracy | 50mm (range: 10 to 30m)

Angular resolution 0.25 degree

Angular range 270 degrees

Data rate 25ms/scan
Weight 370g

Table 4: Key parameters of Hokuyo UTM-30LX

3.3.4 Inertial Measurement Unit (IMU)

In this project, due to limited computational resource, traditional methods of vSLAM, which
requires iterative features extraction and matching, are not a practical approach. Therefore,
Inertial Measurement Unit (IMU) is deployed in tandem with RGB-D camera. Such practice
has proven to improve the overall performance of the vSLAM [25]. For this project, the IMU is
fixed next to the camera by a customized 3D printed casing. The customized case ensure that
the motions of the camera and the IMU are the same and the IMU is positioned and oriented
at the most advantageous location. Furthermore, the whole sensor package is calibrated before
use. Examples setup for Microsoft Kinect 1 and Intel RealSense is shown in Figure 23. Figure
22a shows the vSLAM module for UGV and Figure 22b for UAV.

Figure 21: WithRobot myAHRS+
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myAHRS myAHRS+

myAHRS+ with Kinnect myAHRS+ with RealSense

Figure 23: myAHRS+ setups with RGB-D cameras

Specifications | Data
Gyroscope 3-axis, +2000dps
Accelerometer | 3-axis, £16g
Magnetometer | 3-axis, £1200uT
Data rate 100Hz (max)
Algorithm EKF
Weight 3g

Table 5: Key parameters of WithRobot myAHRS+

20



4 Discussions, experiments and results

4.1 Ground vehicle (UGV) control

Veloeity
controller | pesired
attitude

Chassis
Desired

velocity

Actual velocity estimates
(Wheel encoders, IMU, etc.)

Actual position estimate
(SLAM, vSLAM, vicon, etc.)

Figure 24: Cascaded control loops implemented on UGV

Sesink Enceder statw

] —

VY

Encoder publes

IMU

Entizated attitude

Figure 25: Components wiring on UGV

At the lowest level, the UGV is controlled by a PID velocity controller, as shown in Figure
24. The Velocity PID controller uses the difference between desired and estimated velocity to
calculate outputs to four omnidirectional wheels. Due to high slip nature of omni-directional
wheels, an EKF is deployed to fuse encoder data together with IMU data to produce better
quality velocity estimates. In the case where encoder and IMU are not available, the controller
will automatically change to blind-driving mode, where the output power to motor is directly
proportional to input desired velocity.

On top of the velocity controller is the position controller, which is also a PID type control
loop. In this project, the position controller obtains position estimates from either vicon mo-
tion capturing system or from on-board SLAM computation. Due to noisy nature of velocity
estimates which impedes the usefulness of the velocity controller, the position PID controller
holds an important role in the performance of the UGV.

For this project, with the available computational resources, the onboard computer is in-charged
of most of the demanding computation, including EKF velocity estimation, PID velocity con-
trol and PID position control. As shown in Figure 25, the computer receives IMU and encoder
readings to estimate velocity and output necessary power to the Microcontroller Unit (MCU)
to actuate the motors. Moreover, the computer, with data from on-board cameras, laser scan-
ners or external vicon motion capturing system, could also independently perform SLAM and
vSLAM, and navigate autonomously.
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4.1.1 Experiment: UGV position control
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Figure 26: UGV 2DOF waypoint test
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Figure 27: UGV 3DOF waypoint test

In order to make sure that the UGV is ready for advanced mission, the basic position control
tests are conducted. In test 1, as shown in Figure 26, the UGV is tasked to follow a square
trajectory with side 1(m). In this test, the position controller will output desired velocity,
capped at 0.15(m/s). From Figure 26, it can be seen that the actual velocity, measured by
vicon, is constant about 0.147(m/s), indicating that the velocity error is kept well below 5%.
However, as the actual position approaches the desired position, the output velocities seems to
be too small, which results in overshooting of upto 0.1(m). Firstly, one of the possible reason is
due to practical limit of the motor, which makes the response curve non-linear toward the zero
input power. Another likely reason could be attributed to the high slip nature of the omni-
directional wheel that makes fine control hard to achieve. Therefore, it is observed that below
0.1m precision, the UGV tends to oscillate at about 0.5(Hz). Fortunately, such low frequency
oscillation would not significantly affect SLAM and vSLAM performance.

The second test to verify the all 3 DOF controllability is a based on a circle trajectory. In this
test, 35 waypoints are set uniformly around a circle of radius 1(m). Moreover, the UGV is also
required to adjust orientation while changing position. According to the test results shown in
Figure 27, the UGV is able to follow the trajectory with position error of less than 0.1(m) and
heading error less than 0.1(radian). The linear velocity is kept well below 0.15(m/s) and yaw
rate stable at 0.1 (rad/s). Such steady rate control would make good condition for SLAM and
vSLAM experiments, which would be addressed in section 4.3.
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4.2 Aerial vehicle (UAV) control
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Figure 28: Cascaded control loops implemented on UAV
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Figure 29: Components wiring on UAV

The control of the UAV requires multiple nested feedback control loops, as shown in Figure 28.
Firstly, since the quadrotor UAV is inherently an unstable system, the most important loop is
the Attitude controller. The attitude loop run at high frequency to allow responsive control
of the UAV. An on-board Extended Kalman Filter fuses data from gyroscope, accelerometer
and magnetometer to produce high frequency reliable attitude estimation. These attitude es-
timations, together with input desired attitudes, are then fed into a PID controller to produce
appropriate motor outputs that would stabilize the UAV. Secondly, the velocity of the UAV
is controlled by another PID controller that feed desired attitude to the attitude controller.
For this project, in order to avoid reinventing the wheel, the PX4 firmware, with proven 32-
state EKF and reliable PID implementation, is used for attitude, velocity and position control.
Before flying mission, various PID parameters are tuned to ensure the response is gentle yet
sufficiently precise. The PID tuning is performed with ground truth measurement from vicon
system. The process is essentially trial-and-error, using Ziegler’s method [26]. This method
would ensure the optimal disturbance rejection behavior [26], which is desirable in this project.
One draw-back of the PX4 PID controller is that it does not support I and D gains for position
controller. One speculative reason is that such omit would practically prevent fast velocity
output, which would protect novice users from aggressive UAVs. However, this would lead to
steady-state error in position control. Therefore, another extra position controller is imple-
mented in the on-board computer to practically add a ID controller for position control. This
problem would be revisited in subsequent discussion with some actual flight data.

4.2.1 Experiment: UAV position control

In order to prepare the UAV for actual missions, the copter itself must be stable and control-
lable. Therefore, two types of test are conducted to observe the UAV behaviors: position hold
test and way-point flight test.

Firstly, the position hold test is used to verify the precision of position control. Since the lab is
an enclosed 10x 10 x 3(m?) room, most of the disturbances comes from the propeller’s downwash
and ground effect, which is random in both magnitude and direction. The copter is set to hover
at (z,y,z) = (0,0,1)(m), and the results captured from vicon is shown in Figure 30. As shown
in Figure 30, during takeoff, the position error grows very quickly. This behaviour is due to the
accumulation of I response in both position controller and velocity controller. However, after
the transient takeoff behavior, the UAV could return and oscillate around its target position.
The maximum error margin is found to be about 0.08(m) in x and y direction and upto 0.2(m)
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in z direction. In terms of heading, the UAV is found to oscillate with amplitude within 0.06
(rad). The linear velocity is below 0.05(m/s). This tuned response is deemed satisfactory and
the oscillation amplitudes are used to set the threshold radius for subsequent waypoint flights.
Secondly, waypoint test is used to verify the response and precision of the UAV flight upon step
input. The trajectory for this test is a square with side 1(m) and the test results are shown
in Figure 31. The results show that the linear velocity for waypoint flight is kept well below 1
(m/s) while the linear precision margin is 0.1(m) and heading precision is below 0.1(rad). This
tuned response is deemed satisfactory for mission flight, especially with SLAM and vSLAM.
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Figure 31: UAV square trajectory test
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4.3 Simultaneous Localization and Mapping (SLAM)
4.3.1 Laser-scan-matching SLAM

In this project, due to the lack of accurate odometry feedback from both UAV and UGV,
the method of laser SLAM must be implemented independently from odometry. Therefore,
laser based SLAM has to rely almost entirely on Iterative Closest Point (ICP) algorithm. This
requirement leads to the selection of Hector SLAM , an open-source ROS based package from
Technical University of Munich (TUM). To test the reliability of Hector SLAM, a Hokuyo
UTM-30LX, together with an Intel-i7 computer running Hector SLAM package, is deployed
on the UGV. The UGV, monitored by the Vicon motion capture system, is set to travel with
different trajectories to compare the accuracy of Hector SLAM against the ground truth from
Vicon.

In the first test, the UGV traveled along a semi-circle with various changing heading. The
results, as shown in Figure 32, indicated that errors could grow over time in both x and y
directions. Moreover, at steady state, the error can persist and can be as much as 0.25(m).

In the second test, the UGV is set on a circular trajectory with various changing headings. The
results, as shown in Figure 33 and Figure 34, indicated a consistent behavior with the first test
with errors growing upto 0.25(m) at the furthest waypoint. However, the error is bounded and
when the UGV returns to its original position, the accuracy is about 0.01(m). It is interesting
to observe the same pattern in the second cycle. The error grows upto a maxima at the point of
opposite heading and converges back when the UGV returns to original position. This behavior
is confirmed with the second attempt at the same test, with slightly faster speed. This cyclic
behavior could be due to the fact that Hector SLAM did not perform loop closure. Therefore,
it could not correct the wrong map and reproduce the error when the cycle is repeated. This
behaviors imply that errors could grow quickly and becomes impossible to recover in a large
map which might limit the application of Hector SLAM to small environment.
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Figure 32: Half Cycle Test
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4.3.2 Visual SLAM

Even though 2D Laser-based SLAM demonstrates good performance as shown in the previous
section, one of its disadvantages is its assumption that the surrounding is mainly structured
environment. This assumption could be tolerated when the vehicle moves in 2D plane like
the case of UGV. However, it limits many applications in 3D operations, especially for UAV.
Therefore, another SLAM method, based on correlation between RGB-D image features, is also
tested in this project. The method is called General Kernelized Correlation Filter (GKCF).
For this experiment, the UGV, carrying a Kinect camera an AHRS IMU, is set to travel in a
square trajectory with fixed heading. In the mean time, the on-board computer would receive
RGB-D images together with IMU reading to compute the vSLAM algorithm. The vSLAM
results, compared against ground truth, is shown in Figure 36 and Table 6. Moreover, the point
dense cloud map of the environment is also computed and reproduced in Figure 35.

As shown in Table 6, the performance is comparable with Laser-based SLAM with maximum
error at 0.3(m) and mean error about 0.11(m). With this level of precision and data rate of
30Hz, this vSLAM method is suitable for UAV flight missions.

Error type Data
RMS 0.123045(m)
Mean 0.110183(m)

Median 0.096577(m)
STD 0.054770(m)
Min 0.046948(m)
Max 0.300279(m)

Table 6: Absolute Translational Errors
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Figure 35: Dense vSLAM point cloud Figure 36: Trajectory
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4.4 Multi-agent System (MAS)
4.4.1 Agent role classification

In order for multiple agents to collaborate toward a common goal, the group must have the
capability to issue commands to individuals, store the collective information and perform certain
actions or physical interactions with the environments. From these requirements , the agents
should be classified into three types: Command (type C), Data (type D) and Action (type
A).

Firstly, agent type A is in charged of performing actions based on a predefined goal. For
example, it can collect data about surrounding environment or perform physical manipulations
if the goal is defined so. The abstractness of the goal, in the context of operation, would imply
the level of autonomy the robot operates. However, there must be a defined goal for agent A,
for an agent without goal is an idle one. Therefore, there must be another agent capable of
giving out commands or goals, which is agent type C.

Agent type C is in charged of distribution of goals. Since a robot, at this level could not
define its own goal even for agent C, the singular ultimate goal for the whole system must be
issued from a human operator. In this case, if the goal from human is sent directly to all agent,
agent C will serve as an interface. However, agent C could use the ultimate goal as guidelines,
especially when the ultimate goal is too abstract and unbounded, to come up with other more
specific goals for other agents. In this case, agent C acts as a Commander and Monitor.
Many a times, situation required the team to combine all the data collected by individual agents.
Examples of such situations include open-area-mapping or search-and-rescue or collaborative
SLAM. Therefore, it is necessary to have agents specializing in storing and keeping track of all
the data. This agent is called agent type D. It should be noted here that the data handled
by agent D should focus on serving the whole network, rather than the individuals. In fact,
in order to autonomously perform its own role, agent A also has its capability to store some
data. However, agent D could request of these some individual data and make public in order
to maximize the performance of the whole network.

In general, in a system that has all three types of agents: type A, C and D, we should see
a network where agents type D are middle men, relaying information, whereas agents type C
are leaders, and agents type A are workers. If the system is to be compared to a functioning
biological system, agent C is the brain, agents D are the nerve fibers and agents A are the
limbs. Together, they forms a system that could intelligently perceive and physically interact
with the environment. An illustration of communication between different types of agents is
presented in Figure 37.
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Figure 37: Inter-agents communication
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4.4.2 Software implementation

As explained in Section 4.4.1, the concept of agent is classified into three types according to
three different abstract roles: Command, Data and Action. In order to realize such concept,
a software implementation is proposed as shown in Figure 38. The implementation is built on
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Robot Operating System (ROS), with C++ language, to inherit the robust and tested node-
based software concept of ROS. Moreover, this implementation is also made open-sourced on
Github, at http://github.com/hmchung/mas_ros, in order to allow open scrutiny and public
contribution.

Firstly, for agent C, its main role is to take command from human and distribute goals to
the rest of the network. Therefore, since the mechanism of goal distribution could already
inherit from existing ROS protocols, the software emphasis should be on the interface with
human operator. Therefore, the major component in the software architecture of Agent C is its
Graphical User Interface (GUI) that could allow good command distribution and visualization.
The visualization includes environment perception, robot state and other data viewers. This
part of the implementation is public on Github at mas_vis.

Secondly, for Agent D, its main task is to deal with data, including collection, distribution, stor-
age, retrieval and pre-processing. Besides, agent D also registers the presence of all agents in
the system, which would help agent C in the process of command distribution. In this project,
due to the time limit and the constraint in project scale, software implementation of agent D
was not possible. However, the author recognizes the importance of agent D in a larger scale
MAS.
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Figure 38: Agents’s role software implementation

Last but not least, the interaction with environment, which is the main practical purpose of
most robotic systems, would not be possible without agent A. Due to the complicated nature
of its operation, the software architecture of agent A are divided into layers. From the bottom
up, we have Low-level control, Middle-level control and High-level control. Low-level control is
mainly concerned with hardware compatibility to ensure that various electro-mechanical devices
on the robots properly functions upon commands from higher levels. On top of the Low-level is
the Middle-level control, which is concerned with orchestrating various hardware components
in a meaningful manner. For example, on a wheeled UGV platform, the Middle-level control
would ensure that the wheels are rotated in the right direction so that the platform moves
in the intended direction. On a multi-rotor UAV platform, the middle-level control would
spin the motors at appropriate velocities to hover the platform at desired attitudes. Above the
Middle-level is the High-level control, which is focusing on environment perception, localization,
navigation and various complicated decision makings. The task of Middle-level could range from
SLAM to Computer Vision to Machine Learning. The main distinction between Middle and
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High layers is that the earlier control by rule-based logical response, whereas the later relies
on more advanced algorithms. The software implementation of agent A can also be found on
Github at mas_low_drivers, mas_mid_controller and mas_high_intelligence.

4.4.3 Hardware implementation
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Figure 39: An example practical implementation of agents

Even though agents are conceptually classified into three types, such distinction should not
be a limit for hardware implementation. In fact, the terms agent in this context refers to a
software notion. In practice, each hardware platform, depending on its nature, could carry
more than one type of agent. For example, one plat form could carry one agent A for platform
control, one agent D for data storage and one agent C for distributing command to the whole
network. A hardware platform that carries only agent C would likely be a ground control
station. A platform that carries only agent D would be a data center. A platform with only
agent A is a command-obey worker. An example of a swarm system is illustrated in Figure 39,
where four quadrotor UAVs and two wheeled UGVs are deployed simultaneously. Firstly, it is
noticeable that each robot has one agent type A, for platform control purpose. Secondly, agents
could reside in various platforms, which demonstrates that the deployment of agents should be
dependent only on the availability of computational resources, instead of platform types. In case
of hardware failure, agents, especially C and D, could migrate to a different available platform
to continue operation. Such a design would allows better hardwares integration and improve
overall system robustness.

4.4.4 Experiments - An overview

In order to verify the feasibility of the proposed MAS implementation, some experiments are
designed to observe the behaviors of individual robots when performing a common mission. In
this project, the test experiment is UAV precision landing on UGV. Moreover, the UGV is set
to patrol in an unknown pattern, therefore the UAV needs to actively search for the target
before approaching and landing.

To formalize the experiment by the MAS concepts that are introduced in the previous discussion,
the experiment involves four agents, including one agent A on the UAV platform named Ay,
one agent A on the UGV platform named A, one agent C and one agent D at the operator
workstation. Upon the start of each experiment, agent A; received the command to search
for and land on the marker, agent Ay to simply patrol around the environment while agent
D collects the data published by A; and As. To materialize the abstract command, each
agent has to use its own sensor data and software capabilities to properly control its attitude,
velocities and positions. As already discussed in Section 4.2 and 4.1, the UAV is capable of
autonomous flight including takeoff, waypoint navigation and landing, while the UGV is capable
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of autonomous waypoint following.

In order for the UAV to successfully land on the UGV, especially when the UGV is moving,
the UAV should be equipped with the hardware and software capabilities, not only to detect
but also to estimate the marker future position. In this project, the UAV is equipped with a
downward facing wide-view camera, as discussed in 3.3.1, which could register the marker image
when the UAV hovers above the UGV. The camera would be calibrated and the digital image
would then be rectified to amend the large degree of distortion due the wide view lens. To
detect the marker from digital image, the ROS ar_pose package, which is based on ARToolKit
library, is selected because of its tested high frequency and reliable robustness, testified by the
open-source community.

In order to catchup with the moving UGV, it is necessary for the UAV to predict its near
future position. To do so, the controller first estimates the velocity of the UGV based on the
current and past position estimates. One of the simplest way is to take an average derivative
of latests position estimates, which demonstrated to work at low speed moving UGV. With
velocity estimates, it is possible to derive position estimates, which determine the x and y
coordinates and heading for UAV setpoint. The z coordinate, or altitude, is calculated based
on desired approach gradient and UAV to UGV distance. This is to ensure that the approach
slope is sufficiently gentle and the landing marker is within view of camera. The whole process is
iterated at every arrival of marker position estimates to send setpoint to UAV position controller
at high frequency. An illustrated summary is demonstrated in Figure 40 for readers’ ease of
understanding.

Desired approach ——-I; :

gradient

Current UAV
position estimate

Current UGV

position estimate
Current UGV Future UGV
velocity estimate position estimate
Past UGV L !

position estimates

UAV Position Controller

Figure 40: Landing position controller

4.4.5 Experiments: Precision landing on static and moving platform

With the marker position estimator and landing controller designed, as explained in the pre-
vious part, the first set of experiment is to verify its performance in the most ideal condition:
static marker. In this experiment, the UAV is set to patrol in a square trajectory and the UGV
is purposely positioned near the UAV path for ease of detection. The result of the test is shown
in Figure 43. From Figure 43, it can be seen that, while hovering at 0.8m averaged altitude,
the UAV starts to detect the marker from about 0.3m ground distance away. Within 4 seconds,
the UAV quickly approach and successfully landed on the target. The precision in x and y
direction is about 0.05(m), which makes the radial accuracy below 0.1(m). The trajectory of
the whole test flight, from takeoff to landing, is shown in Figure 41a.
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Figure 45: Dynamic landing test results, UGV 0.17(m/s)

Following the success of static landing, dynamic landing can now be tested. Since the main
aim to the experiment is to verify if the UAV can follow, approach and land on a moving
platform while not focusing on robustness of detection, the UGV should move near the ground
trajectory of the UAV to increase likelihood of detection. Therefore, the UGV is set to move
with a square trajectory in clockwise direction, while the UAV would takeoff from the center
of the square and attempt to search for the marker by a counter-clockwise square trajectory.
The trajectories of both vehicle are plot in Figure 41b and the experiment results are shown in
Figure 44.

From Figure 44, the UGV is patrolling at about 0.13(m/s). The UAV took off at 8th second
and detected the marker at about 47th second, from about 0.5m away from the UGV. On the
other hand, it is noticeable that at 32nd second, the UAV did not detect the UGV when two
vehices were only 0.2m away from each other. This miss could be explained by the fact that
the camera view is rectangular, which is wide in lateral direction but narrow in longitudinal
direction. It is also noticeable that the precision of detection is about 0.1-0.2(m), which would
eventually affect the precision of landing.

Upon detection at 47th second, the copter was still on patrol mode, in forward direction at
about 0.5m/s. Therefore, it took the UAV about 3 seconds to change its course to quickly
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approach the UGV, descend from 50th second and eventually land at about 53rd second ac-
cording to Figure 44. According to Figure 44, the final precision of landing is about 0.1(m) in
both x and y direction. However, this level of precision is limited by the accuracy of marker
detection. As can be seen from Figure 44, at the instant when the UAV land, its actual position
is within 0.01(m) from the marker position estimates. Therefore, the landing controller and
position controller has done its job, while the accuracy marker detection needs some further
accuracy refinements.

Furthermore, more challenging tests are also conducted where the UGV moves slightly faster at
about 0.17(m/s), compared to about 0.13(m/s) in the previous test. The test results in shown
in Figure 45, indicating interesting behaviors. Firstly, the UAV takes significantly more time
to approach the target. Eventhough landing marker is detected at 15th second, the UAV takes
about 12 seconds, until 27th second, to start descending. Moreover, the decend process also
takes 5 seconds, upto 37th second, for the UAV to be able to land. Compared with the previous
test, the UAV is apparently more struggling to achieve its goal. The possible reason is that the
faster the speed of the UGV, the harder for the UAV to catchup and as long as the UAV is
out of the desired descending gradient, it will only attempt following in order to maintain safe
visual contact with the marker.
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Figure 46: Dynamic landing test results, UGV 0.17(m/s)

Figure 47: UAV approaching mobile UGV for landing
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5 Conclusion

In conclusion, this projects is an attempt to implement Multi-agent System (MAS). By drawing
a distinction between ’vehicle’ and ’agent’, such that ’'vehicle’ referring to hardware platform
and ’agent’ referring to a software entity, the author argues that such implementation would be
more robust, flexible and scalable. The agents are classified into three types: Command agent,
Data agent and Action agent. Command agent distributes goal to the whole system, Data
agents collects and re-distribute information within the network, while Action agents interact
with the physical environment through sensing, actuating or manipulating.

To ensure that individual robots has sufficient capabilities to perform meaningful missions, var-
ious experiments has been conducted. Velocity control and position control are tested on both
UAV and UGV and the controllers are tuned to achieve precision upto 0.1(m) and 0.1(rad).
To prepare for autonomous missions, two SLAM methods were also implemented and tested
on the UGV. Firstly, Laser-based SLAM experiment, based on ROS hector_slam package, was
conducted on the UGV and the errors of localization within indoor enclosed environment can
be as much as 0.25(m). Secondly, visual SLAM experiments, with Kinect RGB-D camera and
IMU, based on General Kernelized Correlation Filter (GKCF), is also tested and the accuracy
is bounded at 0.3(m). Moreover, the GKCF vSLAM is more suitable for UAV mission because
it overcomes the structured-environment assumption of 2D Laser-based SLAM.

Last but not least, new MAS software framework was implemented and experiments were
conducted to verify robots’s performance in joint mission. To test the MAS software implemen-
tation, two heterogeneous robots were deployed together. One of the major tests was precision
landing, where UAV would attempt to search and land on the UGV. The results show that,
when the UGV is static, the precision of the landing is 0.1(m) and depends on the precision
of the accuracy of vision detection, rather than control. Moreover, when the UGV is moving,
experiment results show that the UAV also can approach and land with 0.1(m) precision. How-
ever, the time required to follow, approach, descend and land on targets depends on the speed
of the moving platform.

5.1 Future work

Due to time constraint and limited student experiences, this project still leaves a lot of room
for future developments.

Firstly, even though experiments in this project involved multiple robots, they have yet to
test collaborative behaviors, which is essential for swarm systems. Future experiments could
further explore options such as collaborative SLAM, collaborative search or social foraging with
homogeneous or heterogeneous robots. Secondly, the robots motion controllers and localization
systems could further be tested to its limit. The SLAM system should be further tested in non-
structured, sparse features environment and the controller could be tested when the feedback
data is less accurate such as outdoor fields. Such experiments would further improve the
robustness of the system against real-life application challenges. Last but not least, as the
system scales up in number of individuals and the inter-robot interactions become complicated,
it is important for the robot to have its own capability of learning rather than strictly following
preprogrammed logics. The author hopes that these promising features could be studied and
implemented in the future.
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