vSLAM
Introduction
Minh-Chung Hoang

Introduction

Visual SLAM - A Brief Introduction

Feature-based

 vSLAMAdding more

sensors

Demonstration
Future
development
Q \& A

Minh-Chung Hoang

Nanyang Technological University
hoang.chung@ntu.edu.sg
May 4, 2018

Overview

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adding more

sensors

Demonstration
Future
development
Q \& A
(1) Introduction
(2) Feature-based vSLAM
(3) Adding more sensors
(4) Demonstration
(5) Future development
(6) Q \& A

What is vSLAM

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adading more sensors

Demonstration
Future
development
Q \& A

- Primary input data is in visual form (images).
- Algorithms Simultaneously Localize the robot And Map the environment.
- Determine instantaneous pose (localizing / odometry)
- Determine surrounding environment (mapping)
- Relocalization (loop detection)
- May include global optimization
- Why vSLAM?
- (Relatively) cheap sensors
- Rich information

vSLAM methods

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adding more
sensors
Demonstration
Future
development
Q \& A

- Dense vs Sparse

(a) ElasticFusion
- Direct vs Indirect

(a) SVO

(b) ORB-SLAM 2

(b) ORB-SLAM 2

Standard SLAM system

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adding more
sensors
Demonstration
Future
development
Q \& A

- Front-end
- Features handling
- Visual tracking
- Pose tracking
- Local optimization
- Image encoding
- Back-end
- Keyframes handling
- Loop detection
- Loop closure
- Global optimization

Feature-based vSLAM

vSLAM
Introduction
Minh-Chung
Hoang

Introduction
Feature-based vSLAM

Adding more
sensors
Demonstration
Future
development
Q \& A

- Indirect method - tracking image keypoints
- Sparse mapping - mapping keypoints' location
- Why Feature-based vSLAM?
- Robust against viewpoint and illumination changes
- Good tracking accuracy via Bundle Adjustment
- Robust relocalization via Bags-of-Words
- Less processing power requirement

Image features

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adding more

sensors

Demonstration
Future
development
Q \& A

- Keypoint detection
- Scale invariant
- Rotation invariant
- Robust against illumination changes
- Keypoint descriptor
- Local patch encoding
- Rotation encoding
- Fast to compute
- Fast to match

Camera projection model

Relative camera pose tracking - 1

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adding more
sensors
Demonstration
Future
development
Q \& A

Individual reprojection residue:

$$
e_{j}\left(x, P_{j}\right)=h\left(x, P_{j}\right)-z_{j}
$$

Total reprojection error:

$$
S(x)=\sum_{j=1}^{M}\left\|e_{j}\left(x, P_{j}\right)\right\|_{L 2}=[\mathbf{h}(x)-\mathbf{z}]^{T}[\mathbf{h}(x)-\mathbf{z}]
$$

Relative camera pose tracking - 2

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based
vSLAM
Adding more
sensors
Demonstration
Future
development
Q \& A

The goal: Minimize reporjection error

$$
x^{*}=\underset{x}{\arg \min } S(x)
$$

The method: Iterative Gauss-Newton algorithm

$$
\begin{aligned}
\delta_{i} & \left.\leftarrow \frac{\partial S\left(x_{i}+\delta\right)}{\partial \delta}\right|_{\delta=0}=0 \\
x_{i+1} & \leftarrow x_{i}+\delta_{i}
\end{aligned}
$$

Relative camera pose tracking - 3

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adding more

sensors

Demonstration
Future
development
Q \& A

For better readability, the symbols are further simplified. Let:

$$
\begin{aligned}
\mathbf{e}_{x}=\mathbf{e}(x) & =\mathbf{h}(x)-\mathbf{z} \\
S(x) & =\mathbf{e}_{x}^{T} \Omega \mathbf{e}_{x}
\end{aligned}
$$

Applying first-order Taylor approximation:

$$
\mathbf{e}_{x+\delta}=\mathbf{e}(x+\delta) \cong \mathbf{e}_{x}+\mathbf{J}_{x} \delta \quad, \quad \mathbf{J}_{x}=\left.\frac{\partial \mathbf{e}_{x+\delta}}{\partial \delta}\right|_{\delta=0} \cong \frac{\partial \mathbf{h}(x)}{\partial \delta}
$$

Hence:

$$
\begin{aligned}
S(x+\delta) & \cong\left(\mathbf{e}_{x}+\mathbf{J}_{x} \delta\right)^{T} \Omega\left(\mathbf{e}_{x}+\mathbf{J}_{x} \delta\right) \\
& =\mathbf{e}_{x}^{T} \Omega \mathbf{e}_{x}+\mathbf{e}_{x}^{T} \Omega \mathbf{J}_{x} \delta+\delta^{T} \mathbf{J}_{x}^{T} \Omega \mathbf{e}_{x}+\delta^{T} \mathbf{J}_{x}^{T} \Omega \mathbf{J}_{x} \delta
\end{aligned}
$$

Relative camera pose tracking - 4

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adding more sensors

Demonstration
Future
development
Q \& A

As derived previously:

$$
S(x+\delta) \cong \mathbf{e}_{x}^{T} \Omega \mathbf{e}_{x}+\mathbf{e}_{x}^{T} \Omega \mathbf{J}_{x} \delta+\delta^{T} \mathbf{J}_{x}^{T} \Omega \mathbf{e}_{x}+\delta^{T} \mathbf{J}_{x}^{T} \Omega \mathbf{J}_{x} \delta
$$

Taking partial derivative wrt. δ and evaluate at x_{i} :

$$
\left.\frac{\partial S\left(x_{i}+\delta\right)}{\partial \delta}\right|_{\delta=0}=2 \mathbf{e}_{x_{i}}^{T} \Omega \mathbf{J}_{x_{i}}+2 \delta^{T} \mathbf{J}_{x_{i}}^{T} \Omega \mathbf{J}_{x_{i}}
$$

Therefore, in order to minimize reprojection error:

$$
\left.\frac{\partial S\left(x_{i}+\delta\right)}{\partial \delta}\right|_{\delta=0}=0 \Rightarrow \quad \mathbf{e}_{x_{i}}^{T} \Omega \mathbf{J}_{x_{i}}=-\delta_{i}^{T} \mathbf{J}_{x_{i}}^{T} \Omega \mathbf{J}_{x_{i}}
$$

Or, most importantly:

$$
\mathbf{J}_{x_{i}}^{T} \Omega \mathbf{J}_{x_{i}} \delta_{i}=-\mathbf{J}_{x_{i}}^{T} \Omega \mathbf{e}_{x_{i}}
$$

Gauss-Newton algorithm for camera pose estimate

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adding more
sensors
Demonstration
Future
development
Q \& A

Incremental correction calculation

$$
\mathbf{J}_{x_{i}}^{T} \Omega \mathbf{J}_{x_{i}} \delta_{i}=-\mathbf{J}_{x_{i}}^{T} \Omega \mathbf{e}_{x_{i}}
$$

(1) Initialize pose estimate $x_{i=0}=x_{\text {init }}$
(2) Collect sensor measurement \mathbf{z}_{i}
(3) Evaluate measurement residue $\mathbf{e}_{x_{i}}=\mathbf{h}\left(x_{i}\right)-\mathbf{z}_{i}$
(4) Initialize measurement covariance Ω
(5) Evaluate Jacobian \mathbf{J} at $x_{i}\left(\right.$ or $\left.\mathbf{J}_{x_{i}}\right)$
(1) Evaluate $A=\mathbf{J}_{x_{i}}^{T} \Omega \mathbf{J}_{x_{i}}$
(2) Evaluate $B=-\mathbf{J}_{x_{i}}^{T} \Omega \mathbf{e}_{x_{i}}$
(6) Solve equation $A \delta=B$ for δ_{i}
(7) Update $x_{i+1}=x_{i}+\delta_{i}$
(8) Repeat from step 2 (till convergent)

Gauss-Newton algorithm implementation on $\mathbf{g}^{\mathbf{2}} \mathbf{o}$

vSLAM
Introduction
Minh-Chung Hoang

Introduction

Feature-based vSLAM

Adding more

sensors

Demonstration
Future
development
Q \& A
$\mathbf{g}^{\mathbf{2}} \mathbf{o}$: A General framework for (Hyper) Graph Optimization
(1) Vertex

- Current state setEstimate(.)
(2) Edge
- Logic functions (eg. $h(X, P)$)
- Residual computeError(.)
- Jacobian linearizeOplus(.)
- State update oplusImpl(.)

Optimization on Manifold

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adding more

sensors

Demonstration
Future
development
Q \& A

Translation $\mathbf{t} \in \mathbb{R}^{3}$

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]^{\prime}=\left[\begin{array}{l}
t_{x} \\
t_{y} \\
t_{z}
\end{array}\right]+\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

Rotation $\mathbf{R} \in \mathbb{R}^{3 \times 3}$

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]^{\prime}=\left[\begin{array}{ccc}
c \psi c \phi & -s \psi c \theta+c \psi s \phi s \theta & s \psi s \theta+c \psi s \phi c \theta \\
s \psi c \phi & c \psi c \theta+s \psi s \phi s \theta & -c \psi s \theta+s \psi s \phi c \theta \\
-s \phi & c \phi s \theta & c \phi c \theta
\end{array}\right]_{\psi \phi \theta}\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

Transformation in homogeneous coordinate $\mathbf{T} \in \mathbb{R}^{4 \times 4}$

$$
\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]^{\prime}=\left[\begin{array}{c|c}
\mathbf{R}_{3 \times 3} & \mathbf{t}_{3 \times 1} \\
\hline \mathbf{0}_{1 \times 3} & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Lie Group

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adding more

sensors

Demonstration
Future
development
Q \& A

- Lie (read as Lee : P)
- is a subset of \mathbb{R}^{N}
- is a group
- Closure (if $X, Y, Z \in G$ then $X Y \in G$)
- Associativity $((X Y) Z=X(Y Z))$
- Identity (there exists $I \in G$ that $I X=X I=X$)
- Inverse (there exists X^{-1} that $X X^{-1}=X^{-1} X=I$)
- is a smooth \& differentiable manifold \mathfrak{M} in \mathbb{R}^{N}
- every point $p \in \mathfrak{M}$ has local Euclidean tangent space
- has an associated Lie algebra \mathfrak{m}
- same k Degree-of-Freedom
- re-representation alg: $m \mapsto \mathfrak{m}$
- exponential map exp: $\mathfrak{m} \mapsto \mathfrak{M}$
- logarithm map log: $\mathfrak{M} \mapsto \mathfrak{m}$

Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adding more sensors

Demonstration
Future
development
Q \& A

- Rotation matrices belong to group $\mathfrak{S O}(3)$ (read as SO3)
- $\mathfrak{s o}(3)$ algebra generators: $\boldsymbol{\operatorname { l g }}(m)=\sum_{i=1}^{k} m_{i} \mathbf{G}_{i}$

$$
\mathbf{G}_{1}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], \mathbf{G}_{2}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right], \mathbf{G}_{3}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- Re-representation:

$$
\operatorname{alg}\left(\left[\begin{array}{l}
\theta \\
\phi \\
\psi
\end{array}\right]\right)=\left[\begin{array}{ccc}
0 & -\psi & \phi \\
\psi & 0 & -\theta \\
-\phi & \theta & 0
\end{array}\right]=\left[\begin{array}{l}
\theta \\
\phi \\
\psi
\end{array}\right]_{\times}
$$

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adding more

sensors

Demonstration
Future
development
Q \& A

Let $\omega=[\theta, \phi, \psi]^{T}$ and $\mathbf{R} \in \mathfrak{S O}(3)$ the rotation matrix

- Re-representation: alg : $\mathbb{R}^{3} \mapsto \mathfrak{s o}(3)$

$$
\mathfrak{w}=\operatorname{alg}(\omega)=[\omega]_{\times}
$$

- Exponential mapping: $\exp : \mathfrak{s o}(3) \mapsto \mathfrak{S O}(3)$

$$
\mathfrak{W}=\exp (\mathfrak{w})=e^{[\omega]_{\times}}=\mathbf{I}_{3 \times 3}+\frac{\sin |\omega|}{\cos |\omega|}[\omega]_{\times}+\frac{1-\cos |\omega|}{|\omega|^{2}}[\omega]_{\times}^{2}
$$

- Logarithm mapping: log: $\mathfrak{S O}(3) \mapsto \mathfrak{s o}(3)$

$$
\mathfrak{w}=\ln (\mathbf{R}) \quad \omega=\mathfrak{w}_{\nabla}=[\ln (\mathbf{R})]_{\nabla}
$$

Group $\mathfrak{S e}(3)$ and associated Lie algebra $\mathfrak{s e}(3)$

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adding more

sensors

Demonstration
Future
development
Q \& A

- Rigid transforms belong to group $\mathfrak{S E}(3)$ (read as SE3)
- $\mathfrak{s e}(3)$ algebra generators: $\boldsymbol{\operatorname { a l g }}(m)=\sum_{i=1}^{k} m_{i} \mathbf{G}_{i}$
$\mathbf{G}_{1}=\left[\begin{array}{ccc|c}0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0\end{array}\right], \mathbf{G}_{3}=\left[\begin{array}{ccc|c}0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0\end{array}\right], \mathbf{G}_{5}=\left[\begin{array}{lll|l}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0\end{array}\right]$
$\mathbf{G}_{2}=\left[\begin{array}{ccc|c}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0\end{array}\right], \mathbf{G}_{4}=\left[\begin{array}{ccc|c}0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0\end{array}\right], \mathbf{G}_{6}=\left[\begin{array}{lll|l}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0\end{array}\right]$

Group $\mathfrak{S e}(3)$ and associated Lie algebra $\mathfrak{s e}(3)$

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adding more sensors

Demonstration
Future
development
Q \& A

Let $\mathbf{v}=\left[\mathbf{t}^{T}, \omega^{T}\right]^{T}$ and $\mathbf{T} \in \mathfrak{S E}(3)$ the rigid transform

- Re-representation: alg : $\mathbb{R}^{6} \mapsto \mathfrak{s e}(3)$

$$
\mathfrak{v}=\operatorname{alg}(\mathbf{v})=\left[\begin{array}{cc}
{[\omega]_{\times}} & \mathbf{t} \\
0 & 0
\end{array}\right]
$$

- Exponential mapping: $\exp : \mathfrak{s e}(3) \mapsto \mathfrak{S} \mathfrak{E}(3)$

$$
\begin{aligned}
& \mathfrak{V}=\exp (\mathfrak{v})=e^{\mathfrak{v}}=\left[\begin{array}{cc}
e^{[\omega]_{\times}} & \mathbf{A t} \\
0 & 0
\end{array}\right] \\
& \mathbf{A}=\mathbf{I}_{3 \times 3}+\frac{1-\cos |\omega|}{|\omega|^{2}}[\omega]_{\times}+\frac{|\omega|-\sin |\omega|}{|\omega|^{3}}[\omega]_{\times}^{2}
\end{aligned}
$$

- Logarithm mapping: exp : $\mathfrak{S E}(3) \mapsto \mathfrak{s e}(3)$

$$
\omega=\mathfrak{w}_{\nabla}=\left[\ln \left[\mathbf{T}_{(1,1) \ldots(3,3)}\right]_{3 \times 3}\right]_{\nabla} \quad \mathbf{t}=\mathbf{A}^{-1}\left[\mathbf{T}_{(1,4) \ldots(3,4)}\right]_{3 \times 1}
$$

*2 Why all the hassles? Let's recap

vSLAM
Introduction
Minh-Chung Hoang

Method: We decided to use Gauss-Newton (holy eqn below).

$$
\mathbf{J}_{x_{i}}^{T} \Omega \mathbf{J}_{x_{i}} \delta_{i}=-\mathbf{J}_{x_{i}}^{T} \Omega \mathbf{e}_{x_{i}}
$$

To get state update δ_{i}, practically speaking, we need:

- \mathbf{e}_{x} residual $(\mathbf{f}(\mathbf{x})-\mathbf{z})$
- Ω : covariance
- \mathbf{J}_{x} : Jacobian

Problem with Jacobian:

- typically $\mathbf{x} \in \mathfrak{S E}(\mathbf{3})$. Numerically, $\triangle \mathbf{x}$ has 16 dimensions.
- redundant numerical! Not sensible to differentiate!
- actually need to differentiate wrt. something of 6 DoF

Solution by Lie algebra:

- has 6 DoF via 6 generators, with mapping with \mathbb{R}^{6}
- unique bidirectional mapping between $\mathfrak{s e}(3)$ and $\mathfrak{S E}(3)$
- eg: $\mathbf{f}\left(\mathbf{x}_{\mathbf{0}} \oplus \triangle \mathbf{x}\right) \equiv \mathbf{f}\left(e^{[\epsilon] \times} \oplus \mathbf{x}_{\mathbf{0}}\right) \equiv \mathbf{f}_{\mathbf{x}=\mathbf{x}_{\mathbf{0}}}(\epsilon)$

Example application: Point-to-cam projection (1)

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adding more
sensors
Demonstration
Future
development
Q \& A

Let us have:
$X \in \mathfrak{S E}(3)$: camera pose $\epsilon \in \mathbb{R}^{6}$: small pose change $[\epsilon]_{\times} \in \mathfrak{s e}(3):$ small pose change $P \in \mathbb{R}^{4}$: point in world frame $p \in \mathbb{R}^{3}$: projected image point

Therefore: $e^{[\epsilon] \times}$: pose change in $\mathfrak{S E}(3)$ $e^{[\epsilon] \times} \oplus X$: new camera pose $X \oplus P$: point in camera frame
$e^{[\epsilon] \times} \oplus X \oplus P$: point in new camera frame $h\left(e^{[\epsilon] \times} \oplus X \oplus P\right)$: new projected image point

Example application: Point-to-cam projection (2)

vSLAM
Introduction
Minh-Chung Hoang

- Jacobian computation (finally...)

$$
\text { Let } X \oplus P=P^{\prime}=\left[p_{x}^{\prime} p_{y}^{\prime} p_{z}^{\prime}\right]^{T}
$$

$$
\mathbf{J}=\left.\frac{\partial h\left(e^{[\epsilon] \times} \oplus X \oplus P\right)}{\partial \epsilon}\right|_{\epsilon=0} \cong \frac{\partial h(X \oplus P)}{\partial(X \oplus P)} \frac{\partial\left(e^{[\epsilon] \times} \oplus X \oplus P\right)}{\partial \epsilon}
$$

$$
=\frac{\partial h\left(P^{\prime}\right)}{\partial P^{\prime}} \frac{\partial\left(e^{[\epsilon] \times} \oplus P^{\prime}\right)}{\partial \epsilon}=\left[\begin{array}{ccc}
\frac{f_{x}}{p_{z}^{\prime}} & 0 & -\frac{f_{x} p_{x}^{\prime}}{p_{z}^{\prime}} \\
0 & \frac{f_{y}^{\prime}}{p_{z}^{\prime}} & -\frac{f_{y} p_{y}^{\prime}}{p_{z}^{\prime}{ }^{2}}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{I}_{3 \times 3} & \left.-\left[P^{\prime}\right]_{\times}\right]
\end{array}\right]
$$

$$
=\left[\begin{array}{cccccc}
\frac{f_{x}}{p_{z}^{\prime}} & 0 & -\frac{f_{x} p_{x}^{\prime}}{p_{z}^{\prime}} & -f_{x} \frac{p_{x}^{\prime} p_{y}^{\prime}}{p_{z}^{\prime 2}} & f_{x}\left(1+\frac{p_{x}^{\prime 2}}{p_{z}^{\prime 2}}\right) & -f_{x} \frac{p_{y}^{\prime}}{p_{z}^{\prime}} \\
0 & \frac{f_{y}}{p_{z}^{\prime}} & -\frac{f_{y} p_{y}^{\prime}}{p_{z}^{\prime 2}} & -f_{y}\left(1+\frac{p_{y}^{\prime 2}}{p_{z}^{\prime 2}}\right) & f_{y} \frac{p_{x}^{\prime} p_{y}^{\prime}}{p_{z}^{\prime 2}} & f_{y} \frac{p_{x}^{\prime}}{p_{z}^{\prime}}
\end{array}\right]
$$

Example application: Point-to-cam projection (3)

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adding more
sensors
Demonstration
Future
development
Q \& A

Camera pose iterative update - Algorithm in a nutshell
(1) Initialize N map point estimates P_{n} (world frame)
(2) Initialize measurement covariance matrix Ω
(3) Initialize first pose estimate X_{0} (world frame)
(4) Evaluate map points in camera frame: $P_{n}^{\prime}=X \oplus P_{n}$
(5) Evaluate Jacobian matrix (the mess in the previous slide)
(6) Stack all Jacobians and covariances into " big" \mathbf{J}_{x} and Ω
(7) Evaluate pose increment ϵ by solving $\mathbf{J}_{x}^{T} \Omega \mathbf{J}_{x} \epsilon=-\mathbf{J}_{x}^{T} \Omega \mathbf{e}_{x}$
(8) Map ϵ into $\mathfrak{S E}(3): e^{[\epsilon] \times}$
(1) Update camera pose $X \leftarrow e^{[\epsilon] \times} \oplus X$
(10) Return to step 4 (And fasten your seat belt! $)$)

Some practical concerns (that I can think of)

- Step 1: Map point initialization with...monocular camera
- Step 3: Initial pose estimate
- significantly affect convergence and estimation accuracy
- zero doesn't always work
- possible motion model: zero velocity or zero acceleration
- Step 4: Data association
- Which map point to which image point
- Correspondences between consecutive images
- Correspondences between non-consecutive images

Adding an active depth sensor

vSLAM
Introduction
Minh-Chung
Hoang

Introduction
Feature-based vSLAM

Adding more sensors

Demonstration
Future
development
Q \& A

- Advantages
- Directly measure points' position
- Relatively high accuracy
- Low computation requirement
- Disadvantages
- May not work outdoor
- May have limited range
- Cloud-image association
- Quality/Cost ratio

Adding a (synchronized) camera - Stereo vision

vSLAM
Introduction
Minh-Chung
Hoang

Introduction

Feature-based vSLAM

Adding more sensors

Demonstration
Future
development
Q \& A

- Advantages
- Relative low cost
- Points' position observable
- Rich data...now doubles
- Disadvantages
- Costly stereo match search
- Synchronization mechanism

Stereoscopic vision model

vSLAM
Introduction
Minh-Chung Hoang

Introduction

Feature-based vSLAM

Adding more sensors

Demonstration
Future
development
$Q \& A$

$$
\begin{aligned}
P & =\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{T} \\
p_{L} & =\left[\begin{array}{lll}
u_{L} & v_{L}
\end{array}\right]^{T} \quad p_{R}=\left[\begin{array}{ll}
u_{R} & v_{R}
\end{array}\right]^{T}
\end{aligned}
$$

Projection geometry:

$$
\begin{aligned}
v_{L} & =v_{R}=\frac{Y}{Z} f_{y}+c_{y} \\
u_{L} & =\frac{X}{Z} f_{x}+c_{x} \\
u_{R} & =\frac{X}{Z} f_{x}+c_{x}-\frac{t_{x}}{Z} f_{x}
\end{aligned}
$$

Disparity and point's position

$$
\begin{array}{rlrl}
d & =u_{L}-u_{R}=\frac{t_{x} f_{x}}{Z} & Z & =\frac{t_{x} f_{x}}{d} \\
X & =\frac{u_{L}-c_{x}}{f_{x}} Z & Y & =\frac{v_{L}-c_{y}}{f_{y}} Z
\end{array}
$$

Stereoscopic vision model

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adding more sensors

Demonstration
Future
development
Q \& A

$$
P_{\text {cam }}=\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{T} \quad p_{L}=\left[\begin{array}{ll}
u_{L} & v_{L}
\end{array}\right]^{T} \quad p_{R}=\left[\begin{array}{ll}
u_{R} & v_{R}
\end{array}\right]^{T}
$$

Measurement model: $h\left(P_{\text {cam }}\right)=\left[\begin{array}{lll}u_{L} & v_{L} & v_{R}\end{array}\right]^{T}$

$$
h\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{c}
\frac{X}{Z} f_{x}+c_{x} \\
\frac{Y}{Z} f_{y}+c_{y} \\
\frac{X}{Z} f_{x}+c_{x}-\frac{t_{x}}{Z} f_{x}
\end{array}\right)
$$

Derivative:

$$
\frac{\partial h\left(P_{c a m}\right)}{\partial P_{c a m}}=\left[\begin{array}{ccc}
\frac{f_{x}}{Z} & 0 & -\frac{f_{x} X}{Z^{2}} \\
0 & \frac{f_{y}}{Z} & -\frac{f_{Y} Z^{2}}{Z^{2}} \\
\frac{f_{x}}{Z} & 0 & -\frac{\left.f_{x} X^{2}-t_{x}\right)}{Z^{2}}
\end{array}\right]
$$

Stereoscopic vision model

vSLAM
Introduction
Minh-Chung Hoang

Introduction

Feature-based vSLAM

Adding more sensors

Demonstration
Future
development
Q \& A

Assume map point in camera frame. (If not, just transform Θ).

$$
P \equiv P_{\text {cam }}=\left[\begin{array}{ll}
X & Y
\end{array}\right]^{T}
$$

Similar to monocular model, we can formulate Jacobian as:

$$
\begin{aligned}
\mathbf{J} & =\left.\frac{\partial h\left(e^{[\epsilon] \times P} \oplus P\right.}{\partial \epsilon}\right|_{\epsilon=0}=\frac{\partial h(P)}{\partial P} \frac{\partial\left(e^{[\epsilon] \times} \oplus P\right)}{\partial \epsilon} \\
& =\left[\begin{array}{ccc}
\frac{f_{x}}{Z} & 0 & -\frac{f_{x} X}{Z^{2}} \\
0 & \frac{f_{y}}{Z} & -\frac{f_{y} Y}{Z^{2}} \\
\frac{f_{x}}{Z} & 0 & -\frac{f_{x}\left(t_{x}\right)}{Z^{2}}
\end{array}\right]\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & Z & -Y \\
0 & 1 & 0 & -Z & 0 & X \\
0 & 0 & 1 & Y & -X & 0
\end{array}\right] \\
& =\left[\begin{array}{cccccc}
\frac{f_{x}}{Z} & 0 & -\frac{f_{x} X}{Z} & -f_{x} \frac{X Y}{Z^{2}} & f_{x}\left(1+\frac{X^{2}}{Z^{2}}\right) & -f_{x} \frac{Y}{Z} \\
0 & \frac{f_{y}}{Z} & -\frac{f_{y} Y}{Z^{2}} & -f_{y}\left(1+\frac{Y^{2}}{Z^{2}}\right) & f_{y} \frac{X Y}{Z^{2}} & f_{y} \frac{X}{Z} \\
\frac{f_{x}}{Z} & 0 & -\frac{f_{x}\left(X-t_{x}\right)}{Z^{2}} & -\frac{f_{x}\left(X-t_{x}\right) Y}{Z^{2}} & \frac{f_{x}\left[\left(X-t_{x}\right) X+Z^{2}\right]}{Z^{2}} & -\frac{f_{x} Y}{Z}
\end{array}\right]
\end{aligned}
$$

Adding an Inertial Measurement Unit (IMU)

vSLAM
Introduction
Minh-Chung
Hoang

Introduction
Feature-based vSLAM

Adding more sensors

Demonstration
Future
development
Q \& A

- Advantages
- Can be very affordable (\$2.000 USD)
- Can obtain orientation
- High data rate
- Disadvantages
- Can be very expensive (\$2,000 USD)
- Can only obtain orientation
- Unreliable heading

Inertial Measurement Unit (IMU)

vSLAM
Introduction
Minh-Chung Hoang

Introduction
Feature-based vSLAM

Adding more sensors

Demonstration
Future
development
Q \& A

Data output:

- Gyroscope: angular rotation $\left[\omega_{x} \omega_{y} \omega_{z}\right]^{T}$
- Accelerometer: gravitational vector $g\left[\begin{array}{ll}a_{x} & a_{y}\end{array} a_{z}\right]^{T}$
- Compass: magnetic vector $\left[m_{x} m_{y} m_{z}\right]^{T}$ (optional)

Data characteristics:

- Gyroscope: (quite) accurate. But integration will drift
- Accelerometer: noisy. But does not drift
- Compass: noisy. Depends on external interference Data model:
- $\phi_{\text {measured }}=\phi_{\text {true }}-\phi_{\text {bias }}+\psi$
- $\phi_{\text {bias }}$ follows Brownian motion
- ψ is Gaussian noise

Visual(vis)-Inertial(ins) vinSLAM

vSLAM
Introduction
Minh-Chung
Hoang

Introduction
Feature-based vSLAM

Adding more sensors

Demonstration
Future
development
Q \& A

Self-compensating system

- IMU good at roll, pitch (and maybe yaw)
- CAM good at precise translation
- IMU is very useful in fast rotation
- CAM helps with relocalization \& heading recovery

Two approaches:

- Loosely coupled
- Tightly coupled

Loosely-coupled vinSLAM

vSLAM
Introduction
Minh-Chung
Hoang

Introduction
Feature-based vSLAM

Adding more sensors

Demonstration
Future
development
Q \& A

Two separate threads:
(1) INS: Estimate orientation based on IMU readings

- Dynamics:

$$
\left[\begin{array}{c}
\phi \\
\dot{\phi}_{b}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I}_{3} & -\delta t \mathbf{I}_{3} \\
\mathbf{0}_{3} & \mathbf{I}_{3}
\end{array}\right]\left[\begin{array}{c}
\phi \\
\dot{\phi}_{b}
\end{array}\right]^{-}+\left[\begin{array}{c}
\delta t \mathbf{1}_{3 \times 1} \\
\mathbf{0}_{3 \times 1}
\end{array}\right][\omega]
$$

- Covariance update
- Measurement:

$$
[r]_{3 \times 1}=\left[\phi_{\text {meas }}\right]_{3 \times 1}-\left[\mathbf{I}_{3} \mathbf{0}_{3}\right]\left[\begin{array}{c}
\phi \\
\dot{\phi}_{b}
\end{array}\right]
$$

- Kalman gain
- Correction
(1) VIS: Uses INS estimates to determine initial pose estimate
- Iteratively evaluate Jacobian and update pose
- Refine orientations, but not biases

Tightly-coupled vinSLAM

vSLAM
Introduction
Minh-Chung
Hoang

Introduction

Feature-based vSLAM

Adding more sensors

Demonstration
Future
development
Q \& A

One single thread VINS: Simultaneously

- estimate translation
- estimate orientation
- estimate biases

Stereo vSLAM demonstration

vSLAM
Introduction
Minh-Chung
Hoang

Introduction
Feature-based vSLAM

Adding more
sensors
Demonstration
Future
development
Q \& A

Future development

vSLAM
Introduction
Minh-Chung
Hoang

Introduction
Feature-based vSLAM

Adding more
sensors
Demonstration
Future
development
Q \& A

- Immediate future
- Formulate Jacobians for tightly coupled vinsSLAM
- Implementation \& outdoor flight tests
- Adding Deep Learning
- Object constraints between map point
- Scale recovery for monocular SLAM
- Near future
- Adding downward camera and fuse 3rd cam visual odometry
- Adding terrain altimeter and fuse altitude
- Depth estimation with Monocular SLAM via Deep Learning
- CNN-based image features
- Far future

That's all, folks!
vSLAM
Introduction
Minh-Chung
Hoang

Introduction
Feature-based vSLAM

Adding more
sensors
Demonstration
Future
development
Q \& A

TH2nks

References

vSLAM
Introduction
Minh-Chung
Hoang

Introduction
Feature-based
vSLAM
Adding more
sensors
Demonstration
Future
development
Q \& A

