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What is vSLAM

vSLAM
Introduction
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e Primary input data is in visual form (images).

Introduction

e Algorithms Simultaneously Localize the robot And Map
the environment.
e Determine instantaneous pose (localizing / odometry)
e Determine surrounding environment (mapping)
o Relocalization (loop detection)
e May include global optimization

e Why vSLAM?

o (Relatively) cheap sensors
e Rich information
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vSLAM methods

vSLAM
Introduction e Dense vs Sparse
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Introduction

(a) ElasticFusion (b) ORB-SLAM 2
e Direct vs Indirect

(b) ORB-SLAM 2
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Standard SLAM system

vSLAM
Introduction

e Front-end
Features handling
Visual tracking
Pose tracking
Local optimization
Image encoding

e Back-end

Keyframes handling
Loop detection
Loop closure

Global optimization

Introduction
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Feature-based vSLAM

vSLAM . . . .
Introduction e Indirect method - tracking image keypoints

R e Sparse mapping - mapping keypoints’ location

e Why Feature-based vSLAM?

Robust against viewpoint and illumination changes
Good tracking accuracy via Bundle Adjustment
Robust relocalization via Bags-of-Words

Less processing power requirement

Feature-based
vSLAM
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Image features

vSLAM
Introduction
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e Keypoint detection
e Scale invariant
Feature-based 4 i o ;
N - ~ | e Rotation invariant
e Robust against
illumination changes

e Keypoint descriptor

Local patch encoding
Rotation encoding
Fast to compute
Fast to match
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Camera projection model

sstam P=I[XY, 2"
Introduction p= ['U;, ’U]T
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Projection geometry:

Feature-based
vSLAM

25

X .
u = Efz + Cx_E]L;x;

Y t
v= ny "‘Cy*%fy

U f x 0 & - t.’r f '.'1,'
afvi =10 f, ¢ —1,f,
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Relative camera pose tracking - 1

vSLAM
Introduction 3 . object
object point

Minh-Chung
Hoang feature point
.

camera )/

image k — 1 sy’
Feature-based % e
vSLAM Pik i
é: z ﬁg fhage k + 1
Individual reprojection residue:

ej(m'apj) = h(x7 Pj) —Zj

Total reprojection error:

camera image k

M
S(x) = Z lej (@, Pj)l|z2 = [h(z) — z]" [h(z) — 2]
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Relative camera pose tracking - 2

vSLAM
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Minh-Chung
Hoang

The goal: Minimize reporjection error

* .
Feature-based r = argmimn S(f]f)
VSLAM g;

The method: lterative Gauss-Newton algorithm

05 (x; + 6)
9 a0
Tit1 T+ 0

5i<— =0
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Relative camera pose tracking - 3

vSLAM .
Introduction For better readability, the symbols are further simplified. Let:

Minh-Chung
Hoang ex — e(x) — h(x) — g

Feature-based
vSLAM

Applying first-order Taylor approximation:

B ~ _ Oeyys - Oh(z)
ers=e@+9) e, +J0 , J,= 2 |, 90

Hence:

S(x+0) = (ep + J.0)TQ(e, + J0)
—elQe, + 103,64+ 6731 Qe, +67ILQT 6
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Relative camera pose tracking - 4

vSLAM As derived previously:

Introduction

Moang Sz +06) = elQe, + €036+ 67300, +67IT0T,6

Taking partial derivative wrt. ¢ and evaluate at x;:

Feature-based

vSLAM 85(%‘1 +6)

=2el 0J,. +2573TQ0J,.
86 ezi 7 + Z; 7

6=0

Therefore, in order to minimize reprojection error:

85(:@ + 5)

5 =0 = el QJ, =-6JLOJ,

6=0

Or, most importantly:
JL Q3,0 = -1 Qe,,

12/40



Gauss-Newton algorithm for camera pose estimate

vSLAM o 5
Introduction Incremental correction calculation

Minh-Chung T L T
Hoang J(L‘ZQJI"L(S’L — _szﬂemz

@ Initialize pose estimate z;—g = Tt

Feature-based
vSLAM
® Collect sensor measurement z;

© Evaluate measurement residue e,, = h(z;) — z;

O Initialize measurement covariance ()
@ Evaluate Jacobian J at z; (or J,)
© Evaluate A = J] QJ,,
@ Evaluate B = 7']%“7 Qe,,

® Solve equation Aj = B for §;
© Update Tit1 = T + 0;
O Repeat from step 2 (till convergent)
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Gauss-Newton algorithm implementation on g2o

vSLAM
Introduction

g2o0: A General framework for (Hyper) Graph Optimization
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@ Vertex
e Current state
setEstimate(.)

® Edge
e Logic functions
(eg. h(X,P))
e Residual
computeError (.)
s e Jacobian
i linearizeOplus(.)
Lo e State update
oplusImpl (.)

Feature-based
vSLAM
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Optimization on Manifold

vSLAM Translation t € R3

Introduction

Minh-Chung X tiB X
Hoang
Y| =|[ty| +|Y
Z t, Z
Feature-based
vSLAM Rotation R € R3*3
X1’ cpcp  —spcld + cpspst  sysl + cpspch X
Y| = |specd cpcld + sihspsd  —chsh + sipsopch Y
Z —s¢ cosl cocl b Z
Transformation in homogeneous coordinate T € R**4
x7 X
Y o R3><3 t3x1 Y
Z| | O1x3 1 VA
1 1
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Lie Group

vSLAM
Introduction

Lie (read as Lee :P )

Minh-Chung

Hoang e is a subset of RY
e is a group
Feature-based L] Closure (If X, }/, Z S G then XY S G)

vSLAM

e Associativity (XY)Z = X(YZ))
o Identity (there exists I € G that IX = XI = X))
e Inverse (there exists X ! that XX ! = X~1X =17)
e is a smooth & differentiable manifold 9t in RY
e every point p € M1 has local Euclidean tangent space
has an associated Lie algebra m
e same k Degree-of-Freedom
e re-representation alg: m — m
e exponential map exp: m — 9N
e logarithm map log: I +— m
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Group G9(3) and associated Lie algebra so(3)

vSLAM
Introduction

Minh-Chung * Rotation matrices belong to group GO(3) (read as SO3)

Hoang

e 50(3) algebra generators: alg(m) = Zle m;G;

vetan e 00 0 0 0 1 0 -1 0
G =|0 0 -1{,Ge=|0 0 0[,Gg=|1 0 0
01 0 -1 00 0 0 0

e Re-representation:
0 0 -y ¢ 0
sl o)) v 0 - s
Y ¢ 6 0 vl
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Group G9(3) and associated Lie algebra so(3)

vSLAM Let w = [0, $,%]" and R € GO(3) the rotation matrix

Introduction

Minh-Chung e Re-representation: alg : R? — s0(3)

Hoang

o = alg(w) = [w]x
Feature-based
vSLAM

o Exponential mapping: exp : 50(3) — SO(3)

sin|w|
wl

0s|

1 — cos|w|

2 = exp(w) = e¥Ix = TI5,3 + [w]x + [w]?

jwl?

e Logarithm mapping: log : SO(3) — s0(3)
w = In(R) w=wgy = [In(R)]v
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Group G€(3) and associated Lie algebra se(3)

vSLAM
Introduction
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e Rigid transforms belong to group G€(3) (read as SE3)

e se¢(3) algebra generators: alg(m) = 21;21 m;G;

)

Feature-based

vSLAM 0 0 0 0- 0
00 —1/0 1

Gi=1¢ 1 OL’Gg_ 0

|0 0 0 [0 0

[0 0 1]07 0

0 0 00 0

G = —100L’G4_ 0

|0 0 00 0
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Group G€(3) and associated Lie algebra se(3)

VSLAM Let v = [tT,wT]T and T € G&(3) the rigid transform

Introduction

Minh-Chung e Re-representation: alg : RS s se(3)

Hoang

_ | Wkt
v =alg(v) = { 0 o
Feature-based
vSLAM

e Exponential mapping: exp : s¢(3) — G€(3)

Whx At
— | €
U =exp(v) =¢ —[ 0 0 ]

1 — cos|w|

A=1I5.3+ [W]x +

|wl]?
e Logarithm mapping: exp : G&(3) — se(3)
w=r1wy = [In[T ). 33lsxsly t=AT[T(14)..34)5x1
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® Why all the hassles? Let's recap

vSLAM Method: We decided to use Gauss-Newton (holy eqn below).

Introduction

_ ) T _ _qT
Minh-Chung J:Z)ZQJQH(SZ — _JIZQex’L

Hoang
To get state update §;, practically speaking, we need:
e e, residual (f(x) — z)
e (2. covariance
e J,: Jacobian
Problem with Jacobian:
e typically x € &¢&(3). Numerically, Ax has 16 dimensions.
e redundant numerical! Not sensible to differentiate!
e actually need to differentiate wrt. something of 6 DoF
Solution by Lie algebra:
e has 6 DoF via 6 generators, with mapping with R®
e unique bidirectional mapping between s¢(3) and S¢&(3)
o eg: f(xo ® Ax) = f(eldx @ xq) = frx, (€)

Feature-based
vSLAM
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Example application: Point-to-cam projection (1)

vSLAM
Introduction Let us have:

Minh Chung X € G¢&(3): camera pose
h e € R5: small pose change
" [€]x € se(3): small pose change
S P € R*: point in world frame
AR & e p € R3: projected image point

P=(X.Y.2)

Therefore:

eldx: pose change in G&(3)
eldx @ X: new camera pose
X @ P: point in camera frame

el o X @ P: point in new camera frame
h(eldx @ X @ P): new projected image point
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Example application: Point-to-cam projection (2)

vSLAM
Introduction

e Jacobian computation (finally...)

Let X ® P = P' = [p}, p, pl.]"

Minh-Chung
Hoang

Feature-based
A J_ O exeP)  ohXeP) o eXePp)
B Oe —y OXaP) Oe
' [] / feog _Lfapg
Oh(P") (el @ P’) o e ,
~ o op e |o & _im [Toxs —[F']x]
I pL°
/ 72 /
oo A kR RO
0 ;% _% _fy( _L) fypwp fy%f
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Example application: Point-to-cam projection (3)

vSLAM
Introduction

o e Camera pose iterative update - Algorithm in a nutshell
Hoang O Initialize N map point estimates P, (world frame)

@ Initialize measurement covariance matrix 2

ey oased © |nitialize first pose estimate X (world frame)

O Evaluate map points in camera frame: P, = X @ P,

O Evaluate Jacobian matrix (the mess in the previous slide)

@ Stack all Jacobians and covariances into "big" J, and 2

@ Evaluate pose increment € by solving JTQJ e = —J1 Qe,

® Map € into GE(3): eldx

@ Update camera pose X « eldx @ X

@ Return to step 4 (And fasten your seat belt! @)
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Some practical concerns (that | can think of)

vSLAM
Introduction
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e Step 1: Map point initialization with...monocular camera
e Step 3: Initial pose estimate

e significantly affect convergence and estimation accuracy
e zero doesn't always work
e possible motion model: zero velocity or zero acceleration

e Step 4: Data association

e Which map point to which image point
e Correspondences between consecutive images
e Correspondences between non-consecutive images

Feature-based
vSLAM
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Adding an active depth sensor

vSLAM
Introduction

Minh-Chung o Advantages

Hoang

e Directly measure points’
position

o Relatively high accuracy

e Low computation

Adding more H
requirement

sensors

e Disadvantages

May not work outdoor
May have limited range
Cloud-image association
Quality/Cost ratio

nels
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Adding a (synchronized) camera - Stereo vision

vSLAM
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e Advantages

e Relative low cost
e Points' position observable

Adding more e Rich data...now doubles

sensors

e Disadvantages

o Costly stereo match search
e Synchronization mechanism

27/40



Stereoscopic vision model

vSLAM

Introduction P = [X Y Z]T

Minh-Chung ]T

e pr = [ug vy pr = [ur vr]"

Projection geometry:

Adding more
sensors

Y
vL=vr= S fytoy

UL = %fw +Cy
X ty |
Disparity and point’s position ur="Zhta-7h
d:“L_URthZh Z:tmdfz
ur — ¢ ol
* = Twz Y = f_yyZ
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Stereoscopic vision model

vSLAM
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Pcam - [X Y Z]T PL = [UL UL]T PR = [uR UR]T

Measurement model: h(Pe.qp) = [ur vr, vg]T
Adding more X Kfm + ¢y
sensors h Y — 7fy + C,y
Z %fﬂc +cz — tjz T
Derivative:
fe 0 _ fasg(
ah(Pcam) _ g f_y LY
OPecam Lot
Z 0 Z?

29 /40




Stereoscopic vision model

vSLAM . . .
MO Assume map point in camera frame. (If not, just transform &).

Minh-Chung

Hoang P = Pcam == [X Y Z]T

Similar to monocular model, we can formulate Jacobian as:

Adding more J— (Wl(e[e]X @ P) _ Oh(P) 8(e[€]x @ P)
sensors ae — EZO aP ae
[ 0 -LX 100 0 Z -Y
—lo L& LY Jlo10 -z 0 X
Lo _LE-t)| 0 01 Y -X 0
L Z Z2
i 2
oo B LB L0+%) by
=0 % g —fy(1+ %) £, £, %
fo _ fo(X—ta) _ fa(X—ta)Y fz[(X*t:c)X:FZQ] _ f2Y
L Z 0 Z2 72 72 A
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Adding an Inertial Measurement Unit (IMU)

vSLAM
Introduction

Minh-Chung ,A,\)(Sf"l“"\*
Hoang A o &, o Advantages

e Can be very affordable
($2.000 USD)

e Can obtain orientation

Adding more \ O e High data rate

sensors

e Disadvantages

e Can be very expensive
($2,000 USD)

e Can only obtain orientation

e Unreliable heading
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Inertial Measurement Unit (IMU)

vSLAM
Introduction Data output:
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o Gyroscope: angular rotation [w; wy w;]T
o Accelerometer: gravitational vector gla, a, a.]T
o Compass: magnetic vector [m, m, m.|T (optional)

: Data characteristics:
Adding more

sensors

e Gyroscope: (quite) accurate. But integration will drift

e Accelerometer: noisy. But does not drift

e Compass: noisy. Depends on external interference
Data model:

® Omeasured = Ptrue — Pbias + P

® (piqs follows Brownian motion

e 1) is Gaussian noise
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Visual(vis)-Inertial(ins) vinSLAM

vSLAM
Introduction
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Self-compensating system

e IMU good at roll, pitch (and maybe yaw)
e CAM good at precise translation

Adding more
sensors

e IMU is very useful in fast rotation

e CAM helps with relocalization & heading recovery
Two approaches:

e Loosely coupled

e Tightly coupled
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vSLAM
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Adding more
sensors

Loosely-coupled vinSLAM

Two separate threads:

@ INS: Estimate orientation based on IMU readings

Dynamics:

¢  [Is —dtIz] [o] | [dtlsx1
ol =lo T) (o
Covariance update
Measurement:

[r]ax1 = [Pmeas|ax1 — [I3 03] Lfb]

e Kalman gain
e Correction

o VIS:

Uses INS estimates to determine initial pose estimate

o lteratively evaluate Jacobian and update pose
e Refine orientations, but not biases
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Tightly-coupled vinSLAM

vSLAM . .
el One single thread VINS: Simultaneously

Minh-Chung
Hoang

e estimate translation
e estimate orientation

e estimate biases

Adding more
sensors

CONSTRUCTION
ZONE
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Stereo VSLAM demonstration

vSLAM
Introduction
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Demonstration




Future development

L o e Immediate future
e e Formulate Jacobians for tightly coupled vinsSLAM
Hoang e Implementation & outdoor flight tests
e Adding Deep Learning
e Object constraints between map point
e Scale recovery for monocular SLAM
e Near future
e Adding downward camera and fuse 3rd cam visual
odometry
. e Adding terrain altimeter and fuse altitude
e Depth estimation with Monocular SLAM via Deep Learning
e CNN-based image features

e Far future

development
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That's all, folks!

vSLAM
Introduction

Minh-Chung

Hoang
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