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What is vSLAM

• Primary input data is in visual form (images).

• Algorithms Simultaneously Localize the robot And Map
the environment.

• Determine instantaneous pose (localizing / odometry)
• Determine surrounding environment (mapping)
• Relocalization (loop detection)
• May include global optimization

• Why vSLAM?
• (Relatively) cheap sensors
• Rich information
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vSLAM methods

• Dense vs Sparse

(a) ElasticFusion (b) ORB-SLAM 2

• Direct vs Indirect

(a) SVO (b) ORB-SLAM 2

4 / 40



vSLAM
Introduction

Minh-Chung
Hoang

Introduction

Feature-based
vSLAM

Adding more
sensors

Demonstration

Future
development

Q & A

Standard SLAM system

• Front-end
• Features handling
• Visual tracking
• Pose tracking
• Local optimization
• Image encoding

• Back-end
• Keyframes handling
• Loop detection
• Loop closure
• Global optimization
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Feature-based vSLAM

• Indirect method - tracking image keypoints

• Sparse mapping - mapping keypoints’ location

• Why Feature-based vSLAM?
• Robust against viewpoint and illumination changes
• Good tracking accuracy via Bundle Adjustment
• Robust relocalization via Bags-of-Words
• Less processing power requirement
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Image features

• Keypoint detection
• Scale invariant
• Rotation invariant
• Robust against

illumination changes

• Keypoint descriptor
• Local patch encoding
• Rotation encoding
• Fast to compute
• Fast to match
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Camera projection model

P = [X,Y, Z]T

p = [u, v]T

Projection geometry:

u =
X

Z
fx + cx−

tx
Z
fx

v =
Y

Z
fy + cy−

ty
Z
fy

Projection model: h(T, P ) = p

α

uv
1

 =

fx 0 cx −txfx
0 fy cy −tyfy
0 0 1 0



X
Y
Z
1
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Relative camera pose tracking - 1

Individual reprojection residue:

ej(x, Pj) = h(x, Pj)− zj
Total reprojection error:

S(x) =

M∑
j=1

||ej(x, Pj)||L2 = [h(x)− z]T [h(x)− z]
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Relative camera pose tracking - 2

The goal: Minimize reporjection error

x∗ = arg min
x

S(x)

The method: Iterative Gauss-Newton algorithm

δi ←
∂S(xi + δ)

∂δ

∣∣∣∣
δ=0

= 0

xi+1 ← xi + δi
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Relative camera pose tracking - 3

For better readability, the symbols are further simplified. Let:

ex = e(x) = h(x)− z

S(x) = eTxΩex

Applying first-order Taylor approximation:

ex+δ = e(x+ δ) ∼= ex + Jxδ , Jx =
∂ex+δ
∂δ

∣∣∣∣
δ=0

∼=
∂h(x)

∂δ

Hence:

S(x+ δ) ∼= (ex + Jxδ)
TΩ(ex + Jxδ)

= eTxΩex + eTxΩJxδ + δTJTxΩex + δTJTxΩJxδ
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Relative camera pose tracking - 4

As derived previously:

S(x+ δ) ∼= eTxΩex + eTxΩJxδ + δTJTxΩex + δTJTxΩJxδ

Taking partial derivative wrt. δ and evaluate at xi:

∂S(xi + δ)

∂δ

∣∣∣∣
δ=0

= 2eTxiΩJxi + 2δTJTxiΩJxi

Therefore, in order to minimize reprojection error:

∂S(xi + δ)

∂δ

∣∣∣∣
δ=0

= 0 ⇒ eTxiΩJxi = −δTi JTxiΩJxi

Or, most importantly:

JTxiΩJxiδi = −JTxiΩexi
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Gauss-Newton algorithm for camera pose estimate

Incremental correction calculation

JTxiΩJxiδi = −JTxiΩexi

1 Initialize pose estimate xi=0 = xinit

2 Collect sensor measurement zi

3 Evaluate measurement residue exi = h(xi)− zi

4 Initialize measurement covariance Ω

5 Evaluate Jacobian J at xi (or Jxi)

1 Evaluate A = JTxi
ΩJxi

2 Evaluate B = −JTxi
Ωexi

6 Solve equation Aδ = B for δi

7 Update xi+1 = xi + δi

8 Repeat from step 2 (till convergent)
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Gauss-Newton algorithm implementation on g2o

g2o: A General framework for (Hyper) Graph Optimization

1 Vertex
• Current state

setEstimate(.)

2 Edge
• Logic functions

(eg. h(X,P ))
• Residual

computeError(.)
• Jacobian

linearizeOplus(.)
• State update

oplusImpl(.)
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Optimization on Manifold

Translation t ∈ R3 XY
Z

′ =
txty
tz

+

XY
Z


Rotation R ∈ R3×3XY
Z

′ =
cψcφ −sψcθ + cψsφsθ sψsθ + cψsφcθ
sψcφ cψcθ + sψsφsθ −cψsθ + sψsφcθ
−sφ cφsθ cφcθ


ψφθ

XY
Z


Transformation in homogeneous coordinate T ∈ R4×4

X
Y
Z
1


′

=

[
R3×3 t3×1
01×3 1

]
X
Y
Z
1
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Lie Group

• Lie (read as Lee :P )

• is a subset of RN

• is a group
• Closure (if X,Y, Z ∈ G then XY ∈ G)
• Associativity ((XY )Z = X(Y Z))
• Identity (there exists I ∈ G that IX = XI = X)
• Inverse (there exists X−1 that XX−1 = X−1X = I)

• is a smooth & differentiable manifold M in RN
• every point p ∈M has local Euclidean tangent space

• has an associated Lie algebra m
• same k Degree-of-Freedom
• re-representation alg: m 7→ m
• exponential map exp: m 7→M
• logarithm map log: M 7→ m
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Group SO(3) and associated Lie algebra so(3)

• Rotation matrices belong to group SO(3) (read as SO3)

• so(3) algebra generators: alg(m) =
∑k

i=1miGi

G1 =

0 0 0
0 0 −1
0 1 0

 ,G2 =

 0 0 1
0 0 0
−1 0 0

 ,G3 =

0 −1 0
1 0 0
0 0 0


• Re-representation:

alg

(θφ
ψ

) =

 0 −ψ φ
ψ 0 −θ
−φ θ 0

 =

θφ
ψ


×

17 / 40



vSLAM
Introduction

Minh-Chung
Hoang

Introduction

Feature-based
vSLAM

Adding more
sensors

Demonstration

Future
development

Q & A

Group SO(3) and associated Lie algebra so(3)

Let ω = [θ, φ, ψ]T and R ∈ SO(3) the rotation matrix

• Re-representation: alg : R3 7→ so(3)

w = alg(ω) = [ω]×

• Exponential mapping: exp : so(3) 7→ SO(3)

W = exp(w) = e[ω]× = I3×3 +
sin|ω|
cos|ω|

[ω]× +
1− cos|ω|
|ω|2

[ω]2×

• Logarithm mapping: log : SO(3) 7→ so(3)

w = ln(R) ω = w5 = [ln(R)]5
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Group SE(3) and associated Lie algebra se(3)

• Rigid transforms belong to group SE(3) (read as SE3)

• se(3) algebra generators: alg(m) =
∑k

i=1miGi

G1 =


0 0 0 0
0 0 −1 0
0 1 0 0

0 0 0 0

 ,G3 =


0 −1 0 0
1 0 0 0
0 0 0 0

0 0 0 0

 ,G5 =


0 0 0 0
0 0 0 1
0 0 0 0

0 0 0 0

 ,

G2 =


0 0 1 0
0 0 0 0
−1 0 0 0

0 0 0 0

 ,G4 =


0 0 0 1
0 0 0 0
0 0 0 0

0 0 0 0

 ,G6 =


0 0 0 0
0 0 0 0
0 0 0 1

0 0 0 0
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Group SE(3) and associated Lie algebra se(3)

Let v = [tT , ωT ]T and T ∈ SE(3) the rigid transform

• Re-representation: alg : R6 7→ se(3)

v = alg(v) =

[
[ω]× t

0 0

]
• Exponential mapping: exp : se(3) 7→ SE(3)

V = exp(v) = ev =

[
e[ω]× At

0 0

]
A = I3×3 +

1− cos|ω|
|ω|2

[ω]× +
|ω| − sin|ω|
|ω|3

[ω]2×

• Logarithm mapping: exp : SE(3) 7→ se(3)

ω = w5 = [ln[T(1,1)...(3,3)]3×3]5 t = A−1[T(1,4)...(3,4)]3×1
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Why all the hassles? Let’s recap

Method: We decided to use Gauss-Newton (holy eqn below).

JTxiΩJxiδi = −JTxiΩexi

To get state update δi, practically speaking, we need:

• ex residual (f(x)− z)
• Ω: covariance
• Jx: Jacobian

Problem with Jacobian:

• typically x ∈ SE(3). Numerically, 4x has 16 dimensions.
• redundant numerical! Not sensible to differentiate!
• actually need to differentiate wrt. something of 6 DoF

Solution by Lie algebra:

• has 6 DoF via 6 generators, with mapping with R6

• unique bidirectional mapping between se(3) and SE(3)
• eg: f(x0 ⊕4x) ≡ f(e[ε]× ⊕ x0) ≡ fx=x0(ε)
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Example application: Point-to-cam projection (1)

Let us have:
X ∈ SE(3): camera pose
ε ∈ R6: small pose change
[ε]× ∈ se(3): small pose change
P ∈ R4: point in world frame
p ∈ R3: projected image point

Therefore:
e[ε]× : pose change in SE(3)
e[ε]× ⊕X: new camera pose
X ⊕ P : point in camera frame

e[ε]× ⊕X ⊕ P : point in new camera frame
h(e[ε]× ⊕X ⊕ P ): new projected image point
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Example application: Point-to-cam projection (2)

• Jacobian computation (finally...)

Let X ⊕ P = P ′ = [p′x p
′
y p
′
z]
T

J =
∂h(e[ε]× ⊕X ⊕ P )

∂ε

∣∣∣∣
ε=0

∼=
∂h(X ⊕ P )

∂(X ⊕ P )

∂(e[ε]× ⊕X ⊕ P )

∂ε

=
∂h(P ′)

∂P ′
∂(e[ε]× ⊕ P ′)

∂ε
=

fxp′z 0 −fxp′x
p′z

2

0
fy
p′z
−fyp′y

p′z
2

 [I3×3 −[P ′]×
]

=

fxp′z 0 −fxp′x
p′z

2 −fx
p′xp
′
y

p′z
2 fx(1 + p′x

2

p′z
2 ) −fx

p′y
p′z

0
fy
p′z
−fyp′y

p′z
2 −fy(1 +

p′y
2

p′z
2 ) fy

p′xp
′
y

p′z
2 fy

p′x
p′z
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Example application: Point-to-cam projection (3)

Camera pose iterative update - Algorithm in a nutshell

1 Initialize N map point estimates Pn (world frame)

2 Initialize measurement covariance matrix Ω

3 Initialize first pose estimate X0 (world frame)

4 Evaluate map points in camera frame: P ′n = X ⊕ Pn
5 Evaluate Jacobian matrix (the mess in the previous slide)

6 Stack all Jacobians and covariances into ”big” Jx and Ω

7 Evaluate pose increment ε by solving JTxΩJxε = −JTxΩex

8 Map ε into SE(3): e[ε]×

9 Update camera pose X ← e[ε]× ⊕X
10 Return to step 4 (And fasten your seat belt! )
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Some practical concerns (that I can think of)

• Step 1: Map point initialization with...monocular camera

• Step 3: Initial pose estimate
• significantly affect convergence and estimation accuracy
• zero doesn’t always work
• possible motion model: zero velocity or zero acceleration

• Step 4: Data association
• Which map point to which image point
• Correspondences between consecutive images
• Correspondences between non-consecutive images
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Adding an active depth sensor

• Advantages
• Directly measure points’

position
• Relatively high accuracy
• Low computation

requirement

• Disadvantages
• May not work outdoor
• May have limited range
• Cloud-image association
• Quality/Cost ratio

26 / 40
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Adding a (synchronized) camera - Stereo vision

• Advantages
• Relative low cost
• Points’ position observable
• Rich data...now doubles

• Disadvantages
• Costly stereo match search
• Synchronization mechanism

27 / 40
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Stereoscopic vision model

P = [X Y Z]T

pL = [uL vL]T pR = [uR vR]T

Projection geometry:

vL = vR =
Y

Z
fy + cy

uL =
X

Z
fx + cx

uR =
X

Z
fx + cx−

tx
Z
fx

Disparity and point’s position

d = uL − uR =
txfx
Z

Z =
txfx
d

X =
uL − cx
fx

Z Y =
vL − cy
fy

Z
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Stereoscopic vision model

Pcam = [X Y Z]T pL = [uL vL]T pR = [uR vR]T

Measurement model: h(Pcam) = [uL vL vR]T

h

XY
Z

 =

 X
Z fx + cx
Y
Z fy + cy

X
Z fx + cx − tx

Z fx


Derivative:

∂h(Pcam)

∂Pcam
=

 fxZ 0 − fxXZ2

0
fy
Z − fyYZ2

fx
Z 0 − fx(X−tx)Z2
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Stereoscopic vision model

Assume map point in camera frame. (If not, just transform ).

P ≡ Pcam = [X Y Z]T

Similar to monocular model, we can formulate Jacobian as:

J =
∂h(e[ε]× ⊕ P )

∂ε

∣∣∣∣
ε=0

=
∂h(P )

∂P

∂(e[ε]× ⊕ P )

∂ε

=

 fxZ 0 − fxXZ2

0
fy
Z − fyYZ2

fx
Z 0 − fx(X−tx)Z2


1 0 0 0 Z −Y

0 1 0 −Z 0 X
0 0 1 Y −X 0



=


fx
Z 0 − fxXZ2 −fx XYZ2 fx(1 + X2

Z2 ) −fx YZ
0

fy
Z − fyYZ2 −fy(1 + Y 2

Z2 ) fy
XY
Z2 fy

X
Z

fx
Z 0 − fx(X−tx)Z2 − fx(X−tx)YZ2

fx[(X−tx)X+Z2]
Z2 − fxYZ


30 / 40



vSLAM
Introduction

Minh-Chung
Hoang

Introduction

Feature-based
vSLAM

Adding more
sensors

Demonstration

Future
development

Q & A

Adding an Inertial Measurement Unit (IMU)

• Advantages
• Can be very affordable

($2.000 USD)
• Can obtain orientation
• High data rate

• Disadvantages
• Can be very expensive

($2,000 USD)
• Can only obtain orientation
• Unreliable heading
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Inertial Measurement Unit (IMU)

Data output:

• Gyroscope: angular rotation [ωx ωy ωz]
T

• Accelerometer: gravitational vector g[ax ay az]
T

• Compass: magnetic vector [mx my mz]
T (optional)

Data characteristics:

• Gyroscope: (quite) accurate. But integration will drift

• Accelerometer: noisy. But does not drift

• Compass: noisy. Depends on external interference

Data model:

• φmeasured = φtrue − φbias + ψ

• φbias follows Brownian motion

• ψ is Gaussian noise
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Visual(vis)-Inertial(ins) vinSLAM

Self-compensating system

• IMU good at roll, pitch (and maybe yaw)

• CAM good at precise translation

• IMU is very useful in fast rotation

• CAM helps with relocalization & heading recovery

Two approaches:

• Loosely coupled

• Tightly coupled
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Loosely-coupled vinSLAM

Two separate threads:

1 INS: Estimate orientation based on IMU readings
• Dynamics:[

φ

φ̇b

]
=

[
I3 −δtI3
03 I3

] [
φ

φ̇b

]−
+

[
δt13×1
03×1

]
[ω]

• Covariance update
• Measurement:

[r]3×1 = [φmeas]3×1 − [I3 03]

[
φ

φ̇b

]
• Kalman gain
• Correction

1 VIS: Uses INS estimates to determine initial pose estimate
• Iteratively evaluate Jacobian and update pose
• Refine orientations, but not biases
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Tightly-coupled vinSLAM

One single thread VINS: Simultaneously

• estimate translation

• estimate orientation

• estimate biases
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Stereo vSLAM demonstration
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Future development

• Immediate future
• Formulate Jacobians for tightly coupled vinsSLAM
• Implementation & outdoor flight tests
• Adding Deep Learning

• Object constraints between map point
• Scale recovery for monocular SLAM

• Near future
• Adding downward camera and fuse 3rd cam visual

odometry
• Adding terrain altimeter and fuse altitude
• Depth estimation with Monocular SLAM via Deep Learning
• CNN-based image features

• Far future
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Q & A
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That’s all, folks!
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